
Modeling Physical Capabilities of Humanoid Agents Using Motion Capture Data

Gita Sukthankar
Robotics Institute
Carnegie Mellon

gitars@cs.cmu.edu

Michael Mandel
Computer Science
Carnegie Mellon

mmandel@cs.cmu.edu

Katia Sycara
Robotics Institute
Carnegie Mellon

katia+@cs.cmu.edu

Jessica Hodgins
Computer Science
Carnegie Mellon
jkh@cs.cmu.edu

Abstract

In this paper we demonstrate a method for fine-grained
modeling of a synthetic agent’s physical capabilities—-
running, jumping, sneaking, and other modes of movement.
Using motion capture data acquired from human subjects,
we extract a motion graph and construct a cost map for the
space of agent actions. We show how a planner can incor-
porate this cost model into the planning process to select be-
tween equivalent goal-achieving plans. We explore the util-
ity of our model in three different capacities: 1) modeling
other agents in the environment; 2) representing heteroge-
neous agents with different physical capabilities; 3) mod-
eling agent physical states (e.g., wounded or tired agents).
This technique can be incorporated into applications where
human-like, high-fidelity physical models are important to
the agents’ reasoning process, such as virtual training envi-
ronments.

1. Introduction

Much research attention [3, 6, 11, 19] has been devoted
to the problem of cognitive modeling to create agents with
reasoning skills similar to humans. For applications such as
training environments, computer games, and military simu-
lations with computer-generated forces, it is not enough to
create agents that are merely successful at completing tasks;
we seek to develop agents that can perform in a human-like
fashion. Ultimately, the user must step outside the simula-
tion environment into the real-world and transfer the skills
learned from interactions with agents to human teammates
and opponents. The better our agents can function as “vir-
tual humans”, the more successful a training experience the
user will have.

In many domains, our reasoning is constrained and influ-
enced by an internal model of our physical capabilities. For
instance, when guarding an opponent in a basketball game,
our choice of action depends not only on tactical and strate-
gic concerns, but also on what we believe our abilities to be

relative to our opponents’ physical speed, agility, and en-
durance. This paper addresses the problem of modeling hu-
man physical skills and incorporating this model into the
planning process of a humanoid agent, enabling it to predict
the effect of its actions and respond realistically to those of
its teammates and opponents. We believe that fine-grained
modeling of an agent’s physical capabilities is an important
aspect of planning in sports domains (e.g., basketball, foot-
ball, hockey) as well as in certain combat scenarios, such as
small-unit urban operations. We focus on the following is-
sues:
• modeling humanoid physical capabilities;
• incorporating knowledge of the agent’s physical apti-

tude into planning;
• modeling variations in physical aptitude among indi-

vidual agents and heterogeneous agent categories;
• representing different physical states (e.g., wounded

and tired agents).
We believe that these questions are as vital to creating
human-like agents in active physical domains as cognitive
modeling is for creating agents in more “cerebral” domains.

2. Framework

When selecting actions for agents, the following impor-
tant question often arises: how much time does it actually
take the agent to accomplish each action? For instance, is it
faster for an agent to move to a point behind its current po-
sition by turning around and running forward, or by moving
backwards without changing its direction? Either sequence
of actions will ultimately get the agent to the same (x,y) lo-
cation so there is no reason for a naı̈ve planner lacking a
model of human behavior to prefer one plan over the other.
A priori, the planner might assume that the plan requiring
fewer discrete actions (moving directly backward) should
be preferred over the slightly “longer” plan (turning, mov-
ing forward, turning again), even though for a real human
that “shorter plan” would take longer to execute. Human
behavior is often asymmetric in a way that computer gener-
ated plans are not. Humans have a dominant side (eye, hand,



foot) that leads them to perform actions such as manipulat-
ing objects, jumping, and kicking in different ways. Simi-
larly, in path planning, humans often exhibit the trait of tak-
ing one path fromA to B and a different (possibly longer)
path fromB to A, violating the predictions of typical robot
path planning algorithms.

We propose the following general framework for build-
ing a cost model of human actions:

1. gather exemplars of domain-specific behavior (e.g.,
running, dribbling, sneaking) using a human motion
capture system;

2. construct a motion graph that enables rapid generation
of animation sequences for each behavior;

3. identify an appropriate cost function for scoring can-
didate animation sequences based on elapsed time and
distance criteria;

4. precompute a cost map that expresses the variation in
cost for executing a particular behavior;

5. given a set of equivalent goal-achieving behaviors, se-
lect the one that minimizes the total cost.

The basic assumption underlying our approach is that mo-
tion sequences of behaviors that are implausible or difficult
for humans to execute cannot be constructed without incur-
ring a substantial penalty in the cost function. Our method
requires a fairly complete basis set of data for every behav-
ior that the agent is allowed to execute, otherwise the cost
function will falsely penalize behaviors possible for a hu-
man to perform but not well represented in the data set. The
remainder of this section presents details about each aspect
of the model construction.

Figure 1. A subject wearing a retro-reflective
marker set in the CMU Motion Capture Laboratory.

2.1. Data collection

Human motion data is captured using a Vicon optical
motion capture system with twelve cameras, each capable

of recording at 120Hz, with images of 1000×1000 resolu-
tion. We use a marker set with 43 14mm markers that is an
adaptation of a standard biomechanical marker set with ad-
ditional markers to facilitate distinguishing the left side of
the body from the right side in an automatic fashion. The
motions are captured in a working volume for the subject
of approximately 8’×24’. A subject is shown in the motion
capture laboratory in Figure 1. The motion is generally cap-
tured in long clips (over a minute) to allow the subjects to
perform natural transitions between behaviors and is repre-
sented by a skeleton that includes the subject’s limb lengths
and joint range of motion (computed automatically during a
calibration phase). Each motion sequence contains trajecto-
ries for the position and orientation of the root node (pelvis)
as well as relative joint angles for each body part.

We manually annotate the data to label individual
domain-specific behaviors, such as walking, probing, in-
specting and covering. Because we aim to capture a full
spanning set of motion for a particular behavior, our man-
ual labelling is made tractable with long sessions where
each take is aimed at capturing the full range of a sin-
gle behavior. Often capturing multiple behaviors in one
take is desirable for future synthesis of natural transi-
tions between behaviors or when a particular domain’s
fine-grained behaviors are difficult to capture individu-
ally. In these cases, semi-automated techniques have been
proposed [2] to assist in annotation that require a rela-
tively small portion of the database to be manually la-
belled.

2.2. Motion capture graph

To explore the full physical capabilities of a human for a
particular behavior in a domain-appropriate, simulated en-
vironment, we must move beyond the raw motion data. The
data alone merely allows playback of the subject’s perfor-
mance from the capture session in an environment that is
fixed in size and layout. Often we would like to reuse the
motion data in new environments with full control over the
character’s navigation of its environment and the order in
which various actions are performed.

Motion graphs were introduced [1, 12, 13] to provide a
solution to this need for control by automatically discover-
ing the ways in which the original data could be reassem-
bled to produce visually smooth motion. Instead of being
restricted to a linear playback of the motion clips, the algo-
rithm automatically produces choice points where streams
of motion can be smoothly spliced to create novel motion
sequences. Individual animation frames act as nodes in the
graph, and the choice points act as directed arcs indicating
a possible transition between two frames. Below, we dis-
cuss how searching the graph structure enables us to com-
pute a cost for navigating between two points in a simulated

2



Figure 2. The motion graph is constructed by
finding the distance between each frame in the
database. Edges are added to the graph when
D(f, t) is below a specified threshold. An edge be-
tween two nodes indicates that a transition may
be made to smoothly splice the corresponding
streams of data together.

environment.

2.2.1. Computing a distance metricThe key to building
a motion graph is defining an appropriate distance metric
between pairs of frames in the database. The metric must
ensure that the position and velocity of each body part be
sufficiently similar for two pieces of motion to be joined.
Since the data is captured in the global coordinate system
of the capture area, some care needs to be taken when com-
paring motion captured in different regions of the space. It
is important to note that data in the global coordinate sys-
tem may be translated along the ground and rotated about
the human’s vertical axis without affecting any important
qualities of the motion. Because poses should be compared
in the canonical frame of reference, the algorithm must re-
cover this alignment transformation.

Our distance metric is modeled most closely after the
one introduced by Kovaret al. [12]. The distance metric,

D( f , t), is computed between framef andt in the database
using the joint positions of the poses in a small transition
time window starting atf and t. The purpose of comput-
ing the metric over a window of frames is to ensure that ve-
locity mismatches between the two frames are penalized in
the calculated metric. A coordinate transformation,T( f , t),
is computed to alignf andt in the first frame of the win-
dow so each pose has matching translation in the ground
plane and vertical axis rotation. The metric is computed as
follows:

D( f , t) =
WS

∑
i=0

J

∑
j=0

w j
∥∥p( f + i, j)− (T( f , t)p(t + i, j))

∥∥2
(1)

where WS is the size of the transition window,J is the num-
ber of joints in the character,w j allows for weighting the im-
portance of each joint,p( f , j) is the global position of joint
j at frame f in x,y,z coordinates, andT( f , t) is the coordi-
nate transformation that maps framet to frame f .

An edge connecting two nodes (frames) in the motion
graph is added whenever the distance between the two
frames is below a specified threshold. This threshold may
be varied to balance the transition smoothness with the size
and versatility of the graph. Typically, it is empirically set so
that transitions exhibit no visual discontinuities nor physical
anomalies. For rendering at runtime, transitions are blended
over a small time window using a sinusoidal “ease-in/ease-
out” function to smooth the discontinuity between the two
motion streams.

Once the distance metric has been calculated between all
frames, we employ a pruning strategy adapted from [12,13]
to remove troublesome edges from the graph; this opera-
tion is to avoid the problem of generating paths through
the motion graph that cause the character to get stuck in
a small subset of the motion database. We remove sinks and
dead-ends in the graph by keeping only the largest strongly-
connected component (SCC) of the graph, and this can be
performed efficiently [17].

2.3. Evaluating actions

We now present a metric to score the cost for a human
to move through an environment while performing a par-
ticular behavior, where each path is generated by a motion
graph. The full set of paths is sampled using a stochastic al-
gorithm which converges on a final cost map for the space.
An extension to the algorithm is also presented to handle
obstacles that may be present in a real environment.

2.3.1. Scoring animation sequencesGiven a motion cap-
ture graph, we can generate candidate sequences of the char-
acter performing each behavior that are visually smooth
and lifelike. These sequences, or paths, consist of a series
of frames and transitions created by traversing the motion

3



Figure 3. The Monte Carlo sampling of paths through the motion graph iteratively approximates the cost map.
Light and dark color spheres indicate high and low physical cost according to our metric. The first panel shows
a single path through a motion graph while the subsequent panels show how additional iterations contribute to
convergence. As yet unexplored regions of the world are indicated by smaller spheres.

graph. Each sequence represents a possible chain of mo-
tions that the human could have executed to reach the goal
position. To compute the cost of executing a sequence, we
examine two criteria: (1) time cost, which is directly propor-
tional to the path length in frames; (2) goal achievement—
how well the path achieves the desired goal state. The cost
metric is

C = F +α‖r(x,y)−g(x,y)‖2 (2)

whereC is cost,F is path frame length,r(x,y) is the charac-
ter’s position, andg(x,y) is desired goal position. The path
cost is dominated byF which represents the time cost re-
quired for the character to reach a given location; the sec-
ond term penalizes paths that terminate farther away from
the desired goal. Increasing the discretization of the envi-
ronment reduces the magnitude of the penalty term since
all paths that fall within a grid cell are very close to the goal
but increases the time required to generate the cost map. The
experiments described in Section 3 were run withα = 0.0.
Note that this cost is complementary to the distance met-
ric that we use when assembling the motion graph; because
we know that every sequence is guaranteed to be smooth
and human-like within a certain threshold, we omit smooth-
ness from our path scoring criterion.

2.3.2. Calculating the cost mapTo extract the cost of
performing a behavior for a given set of constraints, we “un-
roll” the motion graph to create a cost map over the envi-
ronment for a given behavior. The map size should be large
enough to accommodate the region over which the planner
may require cost estimates, and sampled at sufficient reso-
lution to ensure that discretization errors do not eliminate
solutions. For example, a map covering a 50’×50’ area at a
resolution of 10×10 corresponds to a grid with 100 equally-
spaced cells, each 5’×5’ in size.

The algorithm stochastically samples the set of valid
paths to move through the environment using the selected

behavior and annotates each cell with the cost of the best
path through that cell. Edges in the graph may optionally be
disabled if the planner wishes to enforce constraints such as
a maximum velocity for the character. The basic steps of the
algorithm are as follows:

• Disable edges in the graph according to constraints
provided by the planner, eliminating illegal actions.

• Estimate a reasonable maximum search depth of the
graph (dependent on desired map size) to bound the
search. Paths greater than the estimated maximum
depth are not considered.

• Perform a Monte Carlo sampling of the motion path
space, updating each cost map cell’s score (according
to the metric described in Section 2.3.1) along the can-
didate paths. Random paths are repeatedly generated
until the cost map converges to a stable configuration.

We adopted this strategy due to the high branching factor of
the motion graph and the necessity to simultaneously eval-
uate every potential cell in the cost map’s space. Since a
real human’s movement is highly variable, making general
early pruning decisions is difficult. Exhaustively searching
the graph using breadth-first search is prohibitively expen-
sive, and more directed search strategies (e.g., A*) are inap-
propriate since a search would need to be initiated for each
cost map cell. If computation time is limited, the Monte
Carlo search also has the desirable property that it may be
terminated early to produce an approximation of the final
cost map. Figure 3 shows a visualization of the search pro-
cess from within our simulator.

Our previously computed cost maps are invariant to an
agent’s position and orientation because they can be embed-
ded with the agent anywhere in an environment. However,
they do not reflect the true physical cost for the agent in the
presence of obstacles. In our solution, if there are obstacles
in the environment, candidate paths that enter obstructed re-
gions are pruned to eliminate physically impossible paths.

4



For a complex environment, the simulator must enforce be-
havioral constraints to ensure that candidate paths do not vi-
olate the terrain requirements (e.g., chasms must be crossed
with jumping or crawlways traversed with crawling). These
constraints are checked during the search to eliminate in-
valid paths.

In presence of obstacles, the cost map is no longer in-
variant to starting position and orientation since its costs are
only correct for a character in the same position relative to
the obstacles. One solution would be to cheaply compute a
small low resolution cost map at run-time to address the cur-
rent state of the character that the planner is considering; an-
other idea is to pre-compute cost maps at choice points in
the environment where the planner is unlikely to be able to
use the previously computed generic cost maps. For a very
complicated environment, the cost model should be com-
puted at run-time for a few regions of interest rather than
building a cost map over the entire environment.

3. Results

Here we present cost models from different domains and
demonstrate possible applications to the agent’s decision-
making process.

3.1. Comparative Cost Models

One of the domains we are currently investigating is
MOUT (Military Operations in Urban Terrain) where sol-
diers perform small-unit tactical maneuvers. For our pre-
liminary cost model of the MOUT soldier, we captured data
from a human subject (male college student) performing
various behaviors required for the execution of team tac-
tical maneuvers: walking, running, sneaking, taking cover,
rising from the ground, using communications equipment,
hand signalling team members, inspecting areas, and prob-
ing for booby-traps. Using the human data and the algo-
rithms described in Sections 2.3.1 and 2.3.2, we built a mo-
tion capture graph that generates smooth animations of the
MOUT soldier performing various behaviors.

In the first scenario, we model the cost of the MOUT sol-
dier running around an obstacle, to determine the tradeoffs
between having the soldier run around a hazardous area vs.
other plans of action (sneaking or probing for booby-traps).
We restrict the animation system to using behaviors labeled
with the “running” descriptor and represent the hazardous
area as an obstacle to prevent the system from simulating
paths that cross the area.

We compare our motion-capture based cost model to
the popular distance-based cost model used by robotic path
planners. Figure 4 shows a cost map generated using grass-
fire path-planning [4] on a discretized version of the space,
along with the “running” cost map created with the human

motion capture data and the cost map of the “sneaking” be-
havior. The cost map generated by grassfire is shaded uni-
formly dark to light with distance from starting position.
This reflects a belief that moving in any direction is equally
feasible. Unfortunately this approximation is not consistent
with human behavior, and agents that use this model are eas-
ily anticipated by human opponents.

3.2. Modeling Opponent Agents

Not only can the agent improve its own plans with a
more refined cost model, but it can also anticipate its op-
ponents’ actions using the cost model. We discuss how our
model could be applied in the basketball domain for a sin-
gle agent attempting to bypass a blocker and score. To gen-
erate our motion graphs, we captured data from a human
subject (male college student) performing basketball ma-
neuvers such as dribbling, pivoting, spinning, and running.
The offensive agent is required to use the dribbling behav-
ior to move the ball down the court, whereas the defender
can use any form of non-dribbling movement. The offen-
sive agent’s goal pose is the shooting stance; it can shoot
from any square with a varying chance of success, which
we model as being inversely proportional to the distance to
the basket. Which location should the offensive agent shoot
from? Clearly shooting from its current position minimizes
the chance of being blocked by the opponent agent but also
has the lowest chance of shooting success since the charac-
ter’s location is far away from the basket. The closer spots
raise the chance of shooting success but also increase the
risk of being intercepted by the blocker. How can the shoot-
ing agent balance the tradeoffs?

One solution to this problem is to have the offensive
agent model the time cost for the opponent to reach dif-
ferent potential shooting positions. By comparing this cost
to its own cost to reach the shooting position, the offensive
agent can balance the risk and reward of various locations.
Combined with an estimate of the time required to make the
shot, the shooting agent should choose a square such that:

Co > Cd +Ts+ ε (3)

whereCo is cost required for an opponent to reach the
square,Cd is the agent’s dribbling cost,Ts is the agent’s
shooting time (constant for all locations), andε is an er-
ror margin. Among the squares that fit this criterion, the of-
fensive agent selects the square that maximizes its shooting
success. Cost maps for the offensive and defensive agents
are pre-computed; the decision can be performed at execu-
tion time in O(n) time, wheren is the number of squares
under consideration.

5



Figure 4. Comparative predictions of different cost models in a region with one obstacle. S denotes the char-
acter’s starting square; the obstructed region is white outlined in black. Costs increase as squares change
from dark to light. The left panel shows the simple distance-based model of running generated with grass-
fire path-planning. The middle panel shows the cost model of the running MOUT soldier generated with human
motion capture data. The right panel shows the cost map generated for the sneaking behavior using the mo-
tion capture data; the sneaking behavior produces a lighter cost map due to the greater time cost associated
from sneaking and is not related to the running cost map in a strictly linear manner. Note the cost asymme-
tries in the human data, compared the grassfire transform which predicts that moving the same absolute dis-
tance in any direction will cost the same.

Figure 5. By examining the difference between its
cost map and the opponent’s, the agent can deter-
mine which squares it can reach before the oppo-
nent. Without prior knowledge, the agent simply
models the opponent using the same cost map.
This cost map was generated in 200,000 iterations
considering paths of 50 frames or less (approxi-
mately 2 seconds).

3.3. Modeling Heterogeneous Agents

The previous scenario raises an important research ques-
tion. Should the offensive agent apply its own cost model
when reasoning about other agents, or should it maintain
separate cost models for every agent? For the domains we
are investigating, we build a separate cost model for ev-
ery class of agent; for example, in the basketball domain,
agents are divided into guards and forwards. Agent hetero-
geneity is modeled at the data collection phase with the fol-
lowing techniques: 1) collecting data from different individ-
uals, preferably subject matter experts; 2) giving the same
actor different instructions; 3) providing the actors with dif-
ferent equipment (encumbering clothing and gear will af-
fect the actors’ movement).

Variability between agents can also be expressed by di-
rectly modifying the motion graph. Eliminating or adding
paths in the motion graph subtly modifies the final cost
model. Behaviors are added or removed simply by enabling
or disabling transitions; also ranges of behavior can be mod-
ified through changes in the graph. For instance, by dis-
abling exemplars of tighter turns in the motion graph, the
agent’s turning radius can be changed, even though the
agent hasn’t been explicitly parameterized with variables
such as running speed, turning radius, or maximum acceler-
ation.

Cost models for heterogeneous agents are of key impor-
tance to team planners that have to make decisions about

6



agent role-allocation; for instance a basketball team plan-
ner could incorporate the players’ cost models into its role
assignment process to determine which player has the best
chance of dribbling and taking a particular shot.

3.4. Modeling Physical States

One potential flaw in our technique is that it doesn’t do
a good job of modeling endurance limits; our cost model
generated by the animation graph suggests that agents can
run, sneak, or dribble forever with no limit imposed by fa-
tigue. Changes in physical state have to be explicitly intro-
duced into the motion capture graph, but once introduced
the cost model for implicit properties (speed, agility) can be
derived by the graph. Using additional motion capture data,
we model a wounded MOUT soldier with reduced capa-
bilities. The new cost model is generated by: 1) adding new
data for the wounded soldier walking and turning; and 2) re-
moving certain behaviors (jumping) by disabling arcs in the
graph. The resulting cost model varies in a way subtly dif-
ferent than merely rescaling the subject’s speed and using
the shortest distance model. The wounded soldier performs
certain tasks at the same speed as the normal soldier, al-
though its running performance is greatly reduced. An open
question is whether it’s easier to edit the motion graph or
to tune explicit parameters. We believe that with an appro-
priate graphical interface, editing the motion capture graph
to add new behaviors and disable inappropriate transitions
(e.g., having the wounded soldier sprint or leap) will be rea-
sonably intuitive.

4. Discussion

We compare our framework to related approaches that
have emerged from different research communities:
• Many simulation agents use motion planning algo-

rithms derived from the robotics community to pro-
duce rapid, optimal paths. Unfortunately, the resulting
motion is not very human-like, and opponent agents
created with this approach can be predictably outwit-
ted in certain domains. Our method creates asymmet-
ric cost models that are less easily anticipated by hu-
man trainees.

• The computer game industry has developed simple
methods for parameterizing the behavior of AI bots us-
ing a small set of qualities such as speed and aggres-
siveness. Although this is a useful way to quickly cre-
ate a large population of bots, the bots lack variability,
since there are only a small number of attributes that
can be tuned to adjust behaviors. Our approach of edit-
ing the motion capture graphs allows the developer to
create many variations on the same bot by enabling and
disabling edges in the graph.

• Biomechanical data has been collected for a limited
set of endeavors but is not easily incorporated into
decision-making algorithms without a model that pre-
dicts how changing low-level parameters affects high-
level behaviors (dribbling, sneaking). Our model is
easily incorporated into planning or learning algo-
rithms since we directly compute the effects of using
the high-level behavior on the world.

Our technique requires collecting a complete set of basis
behaviors for each domain to be modeled, since data omis-
sions can be interpreted as higher cost regions in the cost
map. Also our method does not model phenomena such as
fatigue or injury unless the modeler explicitly introduces
them as separate behavior states. Like many exemplar-
based, non-parametric models, the data collection costs
could be quite high; we envision our framework only being
used to model a small set of behaviors of high importance.
We are still working on the problem of validating the cost
maps against human behavior since experimental data is not
available for many of the domains that we are interested
in; our current plan is to compare the cost map time pre-
dictions with time predictions extracted directly from mo-
tion capture sequences not used in our graphs (k-fold cross-
validation).

5. Related Work

The central motivation for our work is the problem of de-
veloping realistic agents to participate in human training, ei-
ther as computer generated forces in military simulations or
immersive virtual environments. Wray and Laird’s [18] dis-
cussion of the need to introduce variability into human be-
havior modeling motivated certain aspects of our research,
as well as Rickel and Johnson’s work [16] on building vir-
tual humans for team training. Much work on lifelike agents
has been done by the conversational agents community,
see [5] for an overview; pedagogical agents can also ben-
efit from enhanced believability [14].

Jenkins and Matarić [10] have researched the problem
of automatically deriving behaviors from a motion capture
stream, whereas we assume that the behaviors are specified
by the system designer using domain knowledge. Search
techniques on motion graphs have been used to synthe-
size smooth human motion that closely follows a given
path [12, 13] and to paint desired positional and behavioral
constraints on a timeline [2]; in this paper we focus on the
use of motion graphs to deduce the physical capabilities of a
human from a spanning dataset of animation sequences. Re-
itsma and Pollard [15] first introduced the idea of unrolling
a motion graph. Their work can assist in the capture process
by suggesting data that might help fulfill the requirements
of a particular environment or indicate that certain data is
redundant and unnecessary. Funge, Tu, and Terzopoulos [8]

7



couple cognitive modeling with animation techniques to re-
duce the burden on human animators. By cognitively em-
powering the characters, they make the animation task eas-
ier for the animator who need only specify a sketch plan for
the animation sequence; in contrast, we focus on the task
of improving decision-making and planning by incorporat-
ing costs extracted from motion capture sequences.

Other researchers have attempted to simulate or model
motion based on human data. Although data isn’t readily
available for some of the physical endeavors that we’ve ex-
amined (e.g., sneaking), walking and running are relatively
well understood behaviors. Hodgins [9] developed a rigid
body model of a human runner with seventeen segments
and thirty controlled degrees of freedom which she com-
pared to video footage of human runners and biomechan-
ical data. Fajen and Warren [7] have proposed a biologi-
cal model of walking obstacle avoidance based on compu-
tations of goal angle and obstacle angle in which goals and
obstacles are represented as attractors and repulsors for a
second order dynamical system.

6. Conclusion and Future Work

In this paper, we demonstrate a general framework for
building a non-parametric model of an agent’s physical ca-
pabilities using human motion capture data. By precomput-
ing cost maps for actions and areas of interest, the algorithm
provides the high-level decision-making algorithm with a
sound basis for selecting one behavior from a set of equiv-
alently goal-achieving actions. In future work, we will ex-
plore other methods for incorporating the cost model pre-
dictions directly into a planner, beyond the current approach
of locally selecting the best action at every step.

Acknowledgements

We thank Rahul Sukthankar for his insightful comments
and the CMU Motion Capture Lab for capturing and pro-
cessing our data. This work has been supported by ONR
grant N00014-02-1-0438 and NSF grant EIA-0196217.

References

[1] O. Arikan and D. A. Forsyth. Interactive motion genera-
tion from examples. InProceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive Techniques,
pages 483–490, 2002.

[2] O. Arikan, D. A. Forsyth, and J. F. O’Brien. Motion synthe-
sis from annotations.ACM Trans. Graph., 22(3):402–408,
2003.

[3] B. Best and C. Lebiere. Spatial plans, communication, and
teamwork in synthetic MOUT agents. InProceedings of Be-
havior Representation in Modeling and Simulation Confer-
ence (BRIMS), 2003.

[4] H. Blum. A transformation for extracting new descriptors
of shape. InProceedings of Symposium Models Perception
Speech Visual Form, 1964.

[5] J. Cassell, J. Sullivan, S. Provost, and E. Churchill, editors.
Embodied Conversational Agents. MIT Press, 2000.

[6] K. Craig, J. Doyal, B. Brett, C. Lebiere, E. Biefeld, and
E. Martin. Development of a hybrid model of tactical
fighter pilot behavior using IMPRINT task network model
and ACT-R. InProceedings of the Eleventh Conference on
Computer Generated Forces and Behavior Representation,
2002.

[7] B. Fajen and W. Warren. Behavioral dynamics of steering,
obstacle avoidance, and route selection.Journal of Experi-
mental Psychology, 29(2), 2003.

[8] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling:
Knowledge reasoning, and planning for intelligent charac-
ters. InProceedings of SIGGRAPH 99, 1999.

[9] J. Hodgins. Three-dimensional human running. InProceed-
ings of IEEE Intenational Conference on Robotics and Au-
tomation (ICRA), 1996.

[10] O. Jenkins and M. Matarić. Automated derivation of behav-
ior vocabularies for autonomous humanoid motion. InPro-
ceedings of International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2003.

[11] R. Jones, M. Tambe, J. Laird, and P. Rosenbloom. Intelligent
automated agents for flight training simulators. InProceed-
ings of the Third Conference on Computer Generated Forces
and Behavior Representation, 1993.

[12] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In
Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, pages 473–482, 2002.

[13] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pol-
lard. Interactive control of avatars animated with human mo-
tion data. InProceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, pages 491–
500, 2002.

[14] J. Lester and B. Stone. Increasing believability in animated
pedagogical agents. InProceedings of the First International
Conference on Autonomous Agents, pages 16–21, 1997.

[15] P. Reitsma and N. Pollard. Evaluating and tuning motion
graphs for character animation. Technical Report CS04-04,
Brown University, 2004.

[16] J. Rickel and W. L. Johnson. Extending virtual human to
support team training in virtual reality. In G. Lakemeyer and
B. Nebel, editors,Exploring Artificial Intelligence in the New
Millenium. Morgan Kaufmann Publishers, 2002.

[17] R. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal of Computing 1, pages 146–160, 1972.

[18] R. Wray and J. Laird. Variability in human behavior mod-
eling for military simulations. InProceedings of Behav-
ior Representation in Modeling and Simulation Conference
(BRIMS), 2003.

[19] R. Wray, J. Laird, A. Nuxoll, and R. Jones. Intelligent opo-
nents for virtual reality trainers. InProceedings of the Inter-
service/Industry Training, Simulation and Education Confer-
ence(I/ITSEC), 2002.

8


