Modeling Physical Capabilities of Humanoid Agents Using Motion Capture Data
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Abstract relative to our opponents’ physical speed, agility, and en-
durance. This paper addresses the problem of modeling hu-
In this paper we demonstrate a method for fine-grained man physical skills and incorporating this model into the
modeling of a synthetic agent’s physical capabilities—- planning process of a humanoid agent, enabling it to predict
running, jumping, sneaking, and other modes of movementthe effect of its actions and respond realistically to those of
Using motion capture data acquired from human subjects, its teammates and opponents. We believe that fine-grained
we extract a motion graph and construct a cost map for the modeling of an agent’s physical capabilities is an important
space of agent actions. We show how a planner can incor-aspect of planning in sports domains (e.g., basketball, foot-
porate this cost model into the planning process to select be-ball, hockey) as well as in certain combat scenarios, such as
tween equivalent goal-achieving plans. We explore the util- small-unit urban operations. We focus on the following is-
ity of our model in three different capacities: 1) modeling sues:
other agents in the environment; 2) representing heteroge- e modeling humanoid physical capabilities;
neous agents with different physical capabilities; 3) mod- e incorporating knowledge of the agent’s physical apti-

eling agent physical states (e.g., wounded or tired agents). tude into planning;

This technique can be incorporated into applications where e modeling variations in physical aptitude among indi-
human-like, high-fidelity physical models are important to vidual agents and heterogeneous agent categories;
the agents’ reasoning process, such as virtual training envi- e representing different physical states (e.g., wounded
ronments. and tired agents).

We believe that these questions are as vital to creating
human-like agents in active physical domains as cognitive

. modeling is for creating agents in more “cerebral” domains.
1. Introduction

Much research attention [3, 6, 11, 19] has been devoted2. Framework
to the problem of cognitive modeling to create agents with
reasoning skills similar to humans. For applications such as  When selecting actions for agents, the following impor-
training environments, computer games, and military simu- tant question often arises: how much time does it actually
lations with computer-generated forces, it is not enough to take the agent to accomplish each action? For instance, is it
create agents that are merely successful at completing taskgaster for an agent to move to a point behind its current po-
we seek to develop agents that can perform in a human-likesition by turning around and running forward, or by moving
fashion. Ultimately, the user must step outside the simula- backwards without changing its direction? Either sequence
tion environment into the real-world and transfer the skills of actions will ultimately get the agent to the same (x,y) lo-
learned from interactions with agents to human teammatescation so there is no reason for aiveplanner lacking a
and opponents. The better our agents can function as “vir-model of human behavior to prefer one plan over the other.
tual humans”, the more successful a training experience theA priori, the planner might assume that the plan requiring
user will have. fewer discrete actions (moving directly backward) should

In many domains, our reasoning is constrained and influ- be preferred over the slightly “longer” plan (turning, mov-
enced by an internal model of our physical capabilities. For ing forward, turning again), even though for a real human
instance, when guarding an opponent in a basketball gamethat “shorter plan” would take longer to execute. Human
our choice of action depends not only on tactical and strate-behavior is often asymmetric in a way that computer gener-
gic concerns, but also on what we believe our abilities to be ated plans are not. Humans have a dominant side (eye, hand,



foot) that leads them to perform actions such as manipulat-of recording at 120Hz, with images of 1000000 resolu-

ing objects, jumping, and kicking in different ways. Simi- tion. We use a marker set with 43 14mm markers that is an
larly, in path planning, humans often exhibit the trait of tak- adaptation of a standard biomechanical marker set with ad-
ing one path fromA to B and a different (possibly longer) ditional markers to facilitate distinguishing the left side of
path fromB to A, violating the predictions of typical robot the body from the right side in an automatic fashion. The

path planning algorithms. motions are captured in a working volume for the subject
We propose the following general framework for build- of approximately 8<24’. A subject is shown in the motion
ing a cost model of human actions: capture laboratory in Figure 1. The motion is generally cap-

1. gather exemplars of domain-specific behavior (e.g., tured in long clips (over a minute) to allow the subjects to
running, dribbling, sneaking) using a human motion perform natural transitions between behaviors and is repre-

capture system; sented by a skeleton that includes the subject’s limb lengths
2. construct a motion graph that enables rapid generationand joint range of motion (computed automatically during a
of animation sequences for each behavior; calibration phase). Each motion sequence contains trajecto-

3. identify an appropriate cost function for scoring can- ries for the position and orientation of the root node (pelvis)
didate animation sequences based on elapsed time ands well as relative joint angles for each body part.
distance criteria; We manually annotate the data to label individual
4. precompute a cost map that expresses the variation indomain-specific behaviors, such as walking, probing, in-
cost for executing a particular behavior; specting and covering. Because we aim to capture a full
5. given a set of equivalent goal-achieving behaviors, se- spanning set of motion for a particular behavior, our man-
lect the one that minimizes the total cost. ual labelling is made tractable with long sessions where
The basic assumption underlying our approach is that mo-each take is aimed at capturing the full range of a sin-
tion sequences of behaviors that are implausible or difficult gle behavior. Often capturing multiple behaviors in one
for humans to execute cannot be constructed without incur-take is desirable for future synthesis of natural transi-
ring a substantial penalty in the cost function. Our method tions between behaviors or when a particular domain’s
requires a fairly complete basis set of data for every behav-fine-grained behaviors are difficult to capture individu-
ior that the agent is allowed to execute, otherwise the costally. In these cases, semi-automated techniques have been
function will falsely penalize behaviors possible for a hu- proposed [2] to assist in annotation that require a rela-
man to perform but not well represented in the data set. Thetively small portion of the database to be manually la-
remainder of this section presents details about each aspedielled.
of the model construction.

2.2. Motion capture graph

To explore the full physical capabilities of a human for a
particular behavior in a domain-appropriate, simulated en-
vironment, we must move beyond the raw motion data. The
data alone merely allows playback of the subject’s perfor-
mance from the capture session in an environment that is
fixed in size and layout. Often we would like to reuse the
motion data in new environments with full control over the
character’s navigation of its environment and the order in
which various actions are performed.

Motion graphs were introduced [1, 12, 13] to provide a
solution to this need for control by automatically discover-
Figure 1. A subject wearing a retro-reflective ing the ways in which the original data could be reassem-
marker set in the CMU Motion Capture Laboratory. bled to produce visually smooth motion. Instead of being
restricted to a linear playback of the motion clips, the algo-
rithm automatically produces choice points where streams
of motion can be smoothly spliced to create novel motion
sequences. Individual animation frames act as nodes in the
2.1. Data collection graph, and the choice points act as directed arcs indicating

a possible transition between two frames. Below, we dis-

Human motion data is captured using a Vicon optical cuss how searching the graph structure enables us to com-

motion capture system with twelve cameras, each capablgute a cost for navigating between two points in a simulated




D(f,t), is computed between franfeandt in the database

motion 1 @-0- 0000000000 using the joint positions of the poses in a small transition
motion ? ©-0-0-0-0-0-0-0-0-0-0-0 time window starting atf andt. The purpose of comput-

ing the metric over a window of frames is to ensure that ve-

motion 3 ©-0-0-0-0-0-0-0-0-0-0-0 locity mismatches between the two frames are penalized in
L

the calculated metric. A coordinate transformatioff,t),
is computed to aligrf andt in the first frame of the win-

. s dow so each pose has matching translation in the ground
motionn @-0-0-0-0-0-0-0-0-00-0 plane and vertical axis rotation. The metric is computed as
follows:
SRl DA, Do DL = 5 w[p(f+i.)) — (T(LOPE+L )7 @)
each pair of frames ’ iZo J;) . ’ ’ ’

where WS is the size of the transition windadas the num-
ber of joints in the charactew; allows for weighting the im-

motion 1 portance of each joinf(f, j) is the global position of joint
) j at framef in x,y,z coordinates, and (f,t) is the coordi-
motion 2 nate transformation that maps frame framef.

An edge connecting two nodes (frames) in the motion

motion 3 graph is added whenever the distance between the two
frames is below a specified threshold. This threshold may
be varied to balance the transition smoothness with the size

motion n and versatility of the graph. Typically, it is empirically set so

that transitions exhibit no visual discontinuities nor physical
anomalies. For rendering at runtime, transitions are blended
over a small time window using a sinusoidal “ease-in/ease-
out” function to smooth the discontinuity between the two
motion streams.

Once the distance metric has been calculated between all
frames, we employ a pruning strategy adapted from [12,13]
to remove troublesome edges from the graph; this opera-
tion is to avoid the problem of generating paths through
the motion graph that cause the character to get stuck in
a small subset of the motion database. We remove sinks and
_ dead-ends in the graph by keeping only the largest strongly-
environment. connected component (SCC) of the graph, and this can be
performed efficiently [17].

Figure 2. The motion graph is constructed by
finding the distance between each frame in the
database. Edges are added to the graph when
D(f,t) is below a specified threshold. An edge be-
tween two nodes indicates that a transition may
be made to smoothly splice the corresponding
streams of data together.

2.2.1. Computing a distance metricThe key to building

a motion graph is defining an appropriate distance metric
between pairs of frames in the database. The metric mus
ensure that the position and velocity of each body part be

sufficiently similar for two pieces of motion to be joined. . . .
to move through an environment while performing a par-

Since the data is captured in the global coordinate systemt. ; . .
icular behavior, where each path is generated by a motion
of the capture area, some care needs to be taken when com

aring motion caotured in different reaions of the space. It graph. The full set of paths is sampled using a stochastic al-
paring P . 9 Space. gorithm which converges on a final cost map for the space.
is important to note that data in the global coordinate sys-

tAn extension to the algorithm is also presented to handle

tem may be translated along the ground and rotated abou : .

) . oo ) . obstacles that may be present in a real environment.

the human’s vertical axis without affecting any important

qualities of the motion. Because poses should be compare@.3.1. Scoring animation sequence&iven a motion cap-

in the canonical frame of reference, the algorithm must re- ture graph, we can generate candidate sequences of the char-

cover this alignment transformation. acter performing each behavior that are visually smooth
Our distance metric is modeled most closely after the and lifelike. These sequences, or paths, consist of a series

one introduced by Kovaet al. [12]. The distance metric, of frames and transitions created by traversing the motion

2.3. Evaluating actions

We now present a metric to score the cost for a human



Figure 3. The Monte Carlo sampling of paths through the motion graph iteratively approximates the cost map.
Light and dark color spheres indicate high and low physical cost according to our metric. The first panel shows
a single path through a motion graph while the subsequent panels show how additional iterations contribute to
convergence. As yet unexplored regions of the world are indicated by smaller spheres.

graph. Each sequence represents a possible chain of mdsehavior and annotates each cell with the cost of the best
tions that the human could have executed to reach the goapath through that cell. Edges in the graph may optionally be

position. To compute the cost of executing a sequence, wedisabled if the planner wishes to enforce constraints such as
examine two criteria: (1) time cost, which is directly propor- a maximum velocity for the character. The basic steps of the

tional to the path length in frames; (2) goal achievement— algorithm are as follows:

how well the path achieves the desired goal state. The cost o pisable edges in the graph according to constraints

metric Is provided by the planner, eliminating illegal actions.
_ _ 2 e Estimate a reasonable maximum search depth of the

C=F+afirtey) — gyl @) graph (dependent on desired map size) to bound the
whereC is costF is path frame lengtlr,(x,y) is the charac- search. Paths greater than the estimated maximum
ter’s position, andy(x,y) is desired goal position. The path depth are not considered.
cost is dominated b¥ which represents the time cost re- e Perform a Monte Carlo sampling of the motion path
quired for the character to reach a given location; the sec- space, updating each cost map cell’'s score (according
ond term penalizes paths that terminate farther away from to the metric described in Section 2.3.1) along the can-
the desired goal. Increasing the discretization of the envi- didate paths. Random paths are repeatedly generated

ronment reduces the magnitude of the penalty term since until the cost map converges to a stable configuration.

all paths that fall within a grid cell are very close to the goal \ve adopted this strategy due to the high branching factor of
but increases the time required to genel’ate the cost map. Th%e motion graph and the necessity to Simu|taneous|y eval-
experiments described in Section 3 were run witk 0.0. uate every potential cell in the cost map’s space. Since a
Note that this cost is complementary to the distance met-real human's movement is highly variable, making general

ric that we use when assembling the motion graph; becausearly pruning decisions is difficult. Exhaustively searching

we know that every sequence is guaranteed to be smoothhe graph using breadth-first search is prohibitively expen-
and human-like within a certain threshold, we omit smooth- Sive' and more directed search Strategies (e_g_, A*) are inap_
ness from our path scoring criterion. propriate since a search would need to be initiated for each

2.3.2. Calculating the cost mapTo extract the cost of ~ COSt map cell. If computation time is limited, the Monte
performing a behavior for a given set of constraints, we “un- Carlo search also has the desirable property that it may be
roll” the motion graph to create a cost map over the envi- terminated early to produce an approximation of the final
ronment for a given behavior. The map size should be largec0st map. Figure 3 shows a visualization of the search pro-
enough to accommodate the region over which the plannercess from within our simulator.
may require cost estimates, and sampled at sufficient reso- Our previously computed cost maps are invariant to an
lution to ensure that discretization errors do not eliminate agent’s position and orientation because they can be embed-
solutions. For example, a map covering a680’ areaata  ded with the agent anywhere in an environment. However,
resolution of 16 10 corresponds to a grid with 100 equally- they do not reflect the true physical cost for the agent in the
spaced cells, each &5’ in size. presence of obstacles. In our solution, if there are obstacles
The algorithm stochastically samples the set of valid in the environment, candidate paths that enter obstructed re-
paths to move through the environment using the selectedgions are pruned to eliminate physically impossible paths.



For a complex environment, the simulator must enforce be-motion capture data and the cost map of the “sneaking” be-

havioral constraints to ensure that candidate paths do not vi-havior. The cost map generated by grassfire is shaded uni-

olate the terrain requirements (e.g., chasms must be crossefbrmly dark to light with distance from starting position.

with jumping or crawlways traversed with crawling). These This reflects a belief that moving in any direction is equally

constraints are checked during the search to eliminate in-feasible. Unfortunately this approximation is not consistent

valid paths. with human behavior, and agents that use this model are eas-
In presence of obstacles, the cost map is no longer in-ily anticipated by human opponents.

variant to starting position and orientation since its costs are

only correct for a character in the same position relative to

the obstacles. One solution would bg to cheaply compute a3 5 Modeling Opponent Agents

small low resolution cost map at run-time to address the cur-

rent state of the character that the planner is considering; an-

other idea is to pre-compute cost maps at choice points in Not only can the agent improve its own plans with a

the environment where the planner is unlikely to be able to more refined cost model, but it can also anticipate its op-

use the previously computed generic cost maps. For a veryponents’ actions using the cost model. We discuss how our

complicated environment, the cost model should be com-model could be applied in the basketball domain for a sin-

puted at run-time for a few regions of interest rather than glé agent attempting to bypass a blocker and score. To gen-
building a cost map over the entire environment. erate our motion graphs, we captured data from a human

subject (male college student) performing basketball ma-
neuvers such as dribbling, pivoting, spinning, and running.
The offensive agent is required to use the dribbling behav-

. . ior to move the ball down the court, whereas the defender
Here we present cost models from different domains and o
can use any form of non-dribbling movement. The offen-

demonstrate possible applications to the agent’s decision-_. ) . . -
. sive agent’s goal pose is the shooting stance; it can shoot
making process.

from any square with a varying chance of success, which
] we model as being inversely proportional to the distance to
3.1. Comparative Cost Models the basket. Which location should the offensive agent shoot
) ) ~__ from? Clearly shooting from its current position minimizes

One of the domains we are currently investigating is he chance of being blocked by the opponent agent but also
MOUT (Military Operations in Urban Terrain) where sol-  ha5 the lowest chance of shooting success since the charac-
diers perform small-unit tactical maneuvers. For our pre- yor's |ocation is far away from the basket. The closer spots
liminary cost model of the MOUT soldier, we captured data r5ise the chance of shooting success but also increase the
from a human subject (male college student) performing (i of being intercepted by the blocker. How can the shoot-
various behaviors required for the execution of team tac- ing agent balance the tradeoffs?
tical maneuvers: walking, running, sneaking, taking cover, One solution to this problem is to have the offensive

rising from the ground, using communications equipment, . )
g g g auip agent model the time cost for the opponent to reach dif-

hand signalling team members, inspecting areas, and prob]-c ¢ potential shoofi i B g thi ¢
ing for booby-traps. Using the human data and the algo- erent potential Shooting positions. By comparing this cos

rithms described in Sections 2.3.1 and 2.3.2, we built a mo-to its own cost to reach the shooting position, the offensive

tion capture graph that generates smooth animations of thegg?:éi%ag Svailtlsn%e thtier:s:[k a?(tjhre;/ivrzrdrof v;’::ngl:s :gcakltlciﬂs.
MOUT soldier performing various behaviors. 0 N an estimate of the fime required to maxe e

In the first scenario, we model the cost of the MOUT sol- shot, the shooting agent should choose a square such that:

dier running around an obstacle, to determine the tradeoffs

between having the soldier run around a hazardous area vs. Co>Cy+Ts+e )

other plans of action (sneaking or probing for booby-traps).

We restrict the animation system to using behaviors labeledwhere C, is cost required for an opponent to reach the

with the “running” descriptor and represent the hazardous square,Cq is the agent’s dribbling cosilg is the agent’s

area as an obstacle to prevent the system from simulatingshooting time (constant for all locations), ands an er-

paths that cross the area. ror margin. Among the squares that fit this criterion, the of-
We compare our motion-capture based cost model tofensive agent selects the square that maximizes its shooting

the popular distance-based cost model used by robotic pattsuccess. Cost maps for the offensive and defensive agents

planners. Figure 4 shows a cost map generated using grassre pre-computed; the decision can be performed at execu-

fire path-planning [4] on a discretized version of the space, tion time in O(n) time, wheren is the number of squares

along with the “running” cost map created with the human under consideration.

3. Results



Figure 4. Comparative predictions of different cost models in a region with one obstacle. S denotes the char-
acter’s starting square; the obstructed region is white outlined in black. Costs increase as squares change
from dark to light. The left panel shows the simple distance-based model of running generated with grass-
fire path-planning. The middle panel shows the cost model of the running MOUT soldier generated with human
motion capture data. The right panel shows the cost map generated for the sneaking behavior using the mo-
tion capture data; the sneaking behavior produces a lighter cost map due to the greater time cost associated
from sneaking and is not related to the running cost map in a strictly linear manner. Note the cost asymme-
tries in the human data, compared the grassfire transform which predicts that moving the same absolute dis-

tance in any direction will cost the same.

A faster

@i

Figure 5. By examining the difference between its
cost map and the opponent’s, the agent can deter-
mine which squares it can reach before the oppo-
nent. Without prior knowledge, the agent simply
models the opponent using the same cost map.
This cost map was generated in 200,000 iterations
considering paths of 50 frames or less (approxi-
mately 2 seconds).

3.3. Modeling Heterogeneous Agents

The previous scenario raises an important research ques-
tion. Should the offensive agent apply its own cost model
when reasoning about other agents, or should it maintain
separate cost models for every agent? For the domains we
are investigating, we build a separate cost model for ev-
ery class of agent; for example, in the basketball domain,
agents are divided into guards and forwards. Agent hetero-
geneity is modeled at the data collection phase with the fol-
lowing techniques: 1) collecting data from different individ-
uals, preferably subject matter experts; 2) giving the same
actor different instructions; 3) providing the actors with dif-
ferent equipment (encumbering clothing and gear will af-
fect the actors’ movement).

Variability between agents can also be expressed by di-
rectly modifying the motion graph. Eliminating or adding
paths in the motion graph subtly modifies the final cost
model. Behaviors are added or removed simply by enabling
or disabling transitions; also ranges of behavior can be mod-
ified through changes in the graph. For instance, by dis-
abling exemplars of tighter turns in the motion graph, the
agent’s turning radius can be changed, even though the
agent hasn't been explicitly parameterized with variables
such as running speed, turning radius, or maximum acceler-
ation.

Cost models for heterogeneous agents are of key impor-
tance to team planners that have to make decisions about



agent role-allocation; for instance a basketball team plan- e Biomechanical data has been collected for a limited

ner could incorporate the players’ cost models into its role set of endeavors but is not easily incorporated into
assignment process to determine which player has the best  decision-making algorithms without a model that pre-
chance of dribbling and taking a particular shot. dicts how changing low-level parameters affects high-
level behaviors (dribbling, sneaking). Our model is
3.4. Modeling Physical States easily incorporated into planning or learning algo-
rithms since we directly compute the effects of using

One potential flaw in our technique is that it doesn’t do the high-level behavior on the world.

a good job of modeling endurance limits; our cost model Our technique requires collecting a complete set of basis
generated by the animation graph Suggests that agents CahehaViorS for each domain to be m0d9|ed, since data omis-
run, sneak, or dribble forever with no limit imposed by fa- Sions can be interpreted as higher cost regions in the cost
tigue. Changes in physical state have to be explicitly intro- map. Also our method does not model phenomena such as
duced into the motion capture graph, but once introducedfatigue or injury unless the modeler explicitly introduces
the cost model for implicit properties (speed, agility) can be them as separate behavior states. Like many exemplar-
derived by the graph. Using additional motion capture data, based, non-parametric models, the data collection costs
we model a wounded MOUT soldier with reduced capa- could be quite high; we envision our framework only being
bilities. The new cost model is generated by: 1) adding new Used to model a small set of behaviors of high importance.
data for the wounded soldier walking and turning; and 2) re- We are still working on the problem of validating the cost
moving certain behaviors (jumping) by disabling arcs in the Mmaps against human behavior since experimental data is not
graph. The resulting cost model varies in a way subtly dif- available for many of the domains that we are interested
ferent than merely rescaling the subject's speed and usingn; our current plan is to compare the cost map time pre-
the shortest distance model. The wounded soldier performsdictions with time predictions extracted directly from mo-
certain tasks at the same speed as the normal soldier, altion capture sequences not used in our graphs (k-fold cross-
though its running performance is greatly reduced. An open Validation).

question is whether it's easier to edit the motion graph or

to_tune expli_cit parameters. V_\/_e believe that with an appro- 5 Related Work

priate graphical interface, editing the motion capture graph

to add new behaviors and disable inappropriate transitions e central motivation for our work is the problem of de-
(€.g., having the wounded soldier sprint or leap) will be rea- \g|oping realistic agents to participate in human training, ei-

sonably intuitive. ther as computer generated forces in military simulations or
immersive virtual environments. Wray and Laird’s [18] dis-
4. Discussion cussion of the need to introduce variability into human be-

havior modeling motivated certain aspects of our research,
We compare our framework to related approaches thatas well as Rickel and Johnson’s work [16] on building vir-
have emerged from different research communities: tual humans for team training. Much work on lifelike agents
e Many simulation agents use motion planning algo- has been done by the conversational agents community,
rithms derived from the robotics community to pro- see [5] for an overview; pedagogical agents can also ben-
duce rapid, optimal paths. Unfortunately, the resulting efit from enhanced believability [14].
motion is not very human-like, and opponent agents  Jenkins and Matati[10] have researched the problem
created with this approach can be predictably outwit- of automatically deriving behaviors from a motion capture
ted in certain domains. Our method creates asymmet-stream, whereas we assume that the behaviors are specified
ric cost models that are less easily anticipated by hu- by the system designer using domain knowledge. Search
man trainees. techniques on motion graphs have been used to synthe-
e The computer game industry has developed simplesize smooth human motion that closely follows a given
methods for parameterizing the behavior of Al bots us- path [12, 13] and to paint desired positional and behavioral
ing a small set of qualities such as speed and aggres-<constraints on a timeline [2]; in this paper we focus on the
siveness. Although this is a useful way to quickly cre- use of motion graphs to deduce the physical capabilities of a
ate a large population of bots, the bots lack variability, human from a spanning dataset of animation sequences. Re-
since there are only a small number of attributes that itsma and Pollard [15] first introduced the idea of unrolling
can be tuned to adjust behaviors. Our approach of edit-a motion graph. Their work can assist in the capture process
ing the motion capture graphs allows the developer to by suggesting data that might help fulfill the requirements
create many variations on the same bot by enabling andof a particular environment or indicate that certain data is
disabling edges in the graph. redundant and unnecessary. Funge, Tu, and Terzopoulos [8]



couple cognitive modeling with animation techniques to re-
duce the burden on human animators. By cognitively em-

(4]

powering the characters, they make the animation task eas-
ier for the animator who need only specify a sketch plan for [5]
the animation sequence; in contrast, we focus on the task

of improving decision-making and planning by incorporat-

ing costs extracted from motion capture sequences.

(6]

Other researchers have attempted to simulate or model

motion based on human data. Although data isn’t readily
available for some of the physical endeavors that we've ex-

amined (e.g., sneaking), walking and running are relatively ,

well understood behaviors. Hodgins [9] developed a rigid

body model of a human runner with seventeen segments
and thirty controlled degrees of freedom which she com- [g]
pared to video footage of human runners and biomechan-

ical data. Fajen and Warren [7] have proposed a biologi-

cal model of walking obstacle avoidance based on compu- [9]

tations of goal angle and obstacle angle in which goals and

obstacles are represented as attractors and repulsors for a

second order dynamical system.

6. Conclusion and Future Work

In this paper, we demonstrate a general framework for
building a non-parametric model of an agent’s physical ca-
pabilities using human motion capture data. By precomput-

(10]

(11]

ing cost maps for actions and areas of interest, the algorithn~{12]

provides the high-level decision-making algorithm with a
sound basis for selecting one behavior from a set of equiv-
alently goal-achieving actions. In future work, we will ex-
plore other methods for incorporating the cost model pre-
dictions directly into a planner, beyond the current approach

of locally selecting the best action at every step.
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