
Modeling Physical Variability for Synthetic MOUT Agents

Gita Sukthankar
Michael Mandel

Katia Sycara
Jessica Hodgins

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

412-268-8283, 412-268-7895, 412-268-6795, 412-268-8825
gitars@cs.cmu.edu, mmandel@cs.cmu.edu, katia@cs.cmu.edu, jkh@cs.cmu.edu

Keywords:
physical models of human movement, intelligent agents and avatars, modeling reasoning and decision-making

ABSTRACT: Generating behavioral variability is an important prerequisite in the development of synthetic MOUT (Mili-
tary Operations in Urban Terrain) agents for military simulations. Agents that lack variability are predictable and ineffec-
tive as opponents and teammates for human trainees. Along with cognitive differences, physical differences contribute to-
wards behavioral variability. In this paper, we describe a novel method for modeling physical variability in MOUT soldiers
using motion capture data acquired from human subjects. Motion capture data is commonly used to create animated char-
acters since it retains the nuances of the original human movement. We build a cost model over the space of agent actions
by creating and stochastically sampling motion graphs constructed from human data. Our results demonstrate how differ-
ent cost models can induce variable behavior that remains consistent with military doctrine.

1. Introduction

Behavioral variability is an important aspect of effec-
tive computer generated forces (CGFs). Without variability,
simulated opponents can become monotonously pre-
dictable, and virtual teammates can seem unrealistically
reliable to human trainees. Yet variability is not synony-
mous with randomness, although randomness is a tool that
is often used to generate variability in simulated environ-
ments. Individual characters should behave consistently,
but thepopulationof simulated entities should exhibit vari-
ability.

An important source of behavioral variability, often ne-
glected by designers, is physical variability. Although we
think of humans as having the same basic physical capabili-
ties there are many subtle differences in speed, strength and
agility that affect individual human behavior. This paper ad-
dresses the problem of modeling human physical capabili-
ties and incorporating the physical model into the agent’s
planning. Specifically, we focus on the issue of modeling
physicalvariability in synthetic characters to producebe-
havioral variability in decision making. Although there are

many sources of cognitive variability, such as experience,
training, and intelligence, we believe that fine-grained mod-
eling of an agent’s physical capabilities is an important as-
pect of planning in sports domains (e.g., basketball, foot-
ball, hockey) as well as in combat scenarios involving hu-
man soldiers, such as Military Operations in Urban Terrain
(MOUT).

Wray and Laird [1] discuss the importance of capturing
and encoding variability in human behavior models for
military simulations. Human trainees must learn the char-
acteristics of their opponents; “gaming” the situation by
taking advantage of predictable computer opponents does
not work effectively on real-world adversaries. Yet human
opponents exhibit subtle patterns that trainees must learn
to exploit, whereas agents that randomly select between
different courses of action are unrealistically inscrutable.
Computer-generated teammates and subordinates that lack
variability can induce a false sense of security in the human
trainee that they can be relied upon without monitoring. We
believe that creating variable populations of agents is an
important prerequisite for the development of agent team-
work models. Teams of agents with heterogeneous capabil-

ities must function differently than homogeneous teams. Al-
though predicting a teammate’s action is easier for a homo-
geneous agent, heterogeneous agents can often accomplish
a greater range of tasks by effectively leveraging team di-
versity [2].

The paper is organized as follows. Section 2 gives a de-
tailed description of our methodology for creating human-
like motion and building a movement cost model suitable
for agents’ decision-making; this framework was first intro-
duced in [3]. Section 3 discusses the process of automati-
cally generating a physically diverse population of soldiers
capable of exhibiting behavioral variability in MOUT sce-
narios. We also present an alternate approach for creating
human-like behaviors by monitoring users interacting with
our Unreal Tournament MOUT simulation. Section 4 pro-
vides an overview of related work. Section 5 concludes with
a summary of our contributions.

2. Framework

When selecting actions for agents, the following important
question often arises: how much time does it actually take
the agent to accomplish each action? For instance, is it faster
for an agent to move to a point behind its current position
by turning around and running forward, or by moving back-
wards without changing its direction? Either sequence of
actions will ultimately get the agent to the same (x,y) lo-
cation so there is no reason for a naı̈ve planner lacking a
model of human behavior to prefer one plan over the other.
A priori, the planner might assume that the plan requiring
fewer discrete actions (moving directly backward) should
be preferred over the slightly “longer” plan (turning, mov-
ing forward, turning again), even though for a real human
that “shorter plan” would take longer to execute. Human
behavior is often asymmetric in a way that computer gener-
ated plans are not. Humans have a dominant side (eye, hand,
foot) that leads them to perform actions such as manipulat-
ing objects, jumping, and kicking in different ways. Simi-
larly, in path planning, humans often exhibit the trait of tak-
ing one path fromA to B and a different (possibly longer)
path fromB to A, violating the predictions of typical robot
path planning algorithms.

We propose the following general framework for building a
cost model of human actions:

1 gather exemplars of domain-specific behavior (e.g.,
running, dribbling, sneaking) using a human motion
capture system;

2 construct a motion graph that enables rapid generation
of animation sequences for each behavior;

3 identify an appropriate cost function for scoring can-
didate animation sequences based on elapsed time and
distance criteria;

4 precompute a cost map that expresses the variation in
cost for executing a particular behavior;

5 given a set of equivalent goal-achieving behaviors, se-
lect the one that minimizes the total cost.

The basic assumption underlying our approach is that mo-
tion sequences of behaviors that are implausible or difficult
for humans to execute cannot be constructed without incur-
ring a substantial penalty in the cost function. Our method
requires a fairly complete basis set of data for every behav-
ior that the agent is allowed to execute, otherwise the cost
function will falsely penalize behaviors possible for a hu-
man to perform but not well represented in the data set. The
remainder of this section presents details about each aspect
of the model construction.

Figure 1. A subject wearing a retro-reflective
marker set in the CMU Motion Capture Laboratory.

2.1. Data collection

Human motion data is captured using a Vicon optical mo-
tion capture system with twelve cameras, each capable of
recording at 120Hz, with images of 1000×1000 resolution.
We use a marker set with 43 14mm markers that is an adap-
tation of a standard biomechanical marker set with addi-
tional markers to facilitate distinguishing the left side of the
body from the right side in an automatic fashion. The mo-
tions are captured in a working volume for the subject of ap-
proximately 8’×24’. A subject is shown in the motion cap-
ture laboratory in Figure 1. The motion is generally cap-
tured in long clips (over a minute) to allow the subjects to
perform natural transitions between behaviors and is repre-
sented by a skeleton that includes the subject’s limb lengths
and joint range of motion (computed automatically during a
calibration phase). Each motion sequence contains trajecto-

ries for the position and orientation of the root node (pelvis)
as well as relative joint angles for each body part.

We manually annotate the data to label individual domain-
specific behaviors, such as walking, probing, inspecting and
covering. Because we aim to capture a full spanning set of
motion for a particular behavior, our manual labelling is
made tractable with long sessions where each take is aimed
at capturing the full range of a single behavior. Often cap-
turing multiple behaviors in one take is desirable for future
synthesis of natural transitions between behaviors or when
a particular domain’s fine-grained behaviors are difficult to
capture individually. In these cases, semi-automated tech-
niques have been proposed [4] to assist in annotation that
require a relatively small portion of the database to be man-
ually labelled.

2.2. Motion capture graph

To explore the full physical capabilities of a human for a
particular behavior in a domain-appropriate, simulated en-
vironment, we must move beyond the raw motion data. The
data alone merely allows playback of the subject’s perfor-
mance from the capture session in an environment that is
fixed in size and layout. Often we would like to reuse the
motion data in new environments with full control over the
character’s navigation of its environment and the order in
which various actions are performed.

Motion graphs were introduced [5–7] to provide a solu-
tion to this need for control by automatically discovering
the ways in which the original data could be reassembled
to produce visually smooth motion. Instead of being re-
stricted to a linear playback of the motion clips, the algo-
rithm automatically produces choice points where streams
of motion can be smoothly spliced to create novel motion
sequences. Individual animation frames act as nodes in the
graph, and the choice points act as directed arcs indicating
a possible transition between two frames. Below, we dis-
cuss how searching the graph structure enables us to com-
pute a cost for navigating between two points in a simulated
environment.

2.2.1. Computing a distance metric

The key to building a motion graph is defining an appropri-
ate distance metric between pairs of frames in the database.
The metric must ensure that the position and velocity of
each body part be sufficiently similar for two pieces of mo-
tion to be joined. Since the data is captured in the global co-
ordinate system of the capture area, some care needs to be
taken when comparing motion captured in different regions

Figure 2. Panel 1 shows three example motion
clips from the database. Panel 2 shows the com-
parison between a pair of frames using our dis-
tance function D(f, t) on the joint marker posi-
tions rendered in the bottom panels. Surround-
ing frames form a window of comparison to en-
sure that velocity discrepancies are penalized by
the distance metric. Panel 3 shows the same two
frame windows after the coordinate frame align-
ment has been applied. After the coordinate trans-
formation, the weighted sum of squared differ-
ences between marker positions is computed to
measure similarity.

Figure 3. The motion graph is constructed by
finding the distance between each frame in the
database. Edges are added to the graph when
D(f, t) is below a specified threshold. An edge be-
tween two nodes indicates that a transition may
be made to smoothly splice the corresponding
streams of data together.

of the space. It is important to note that data in the global co-
ordinate system may be translated along the ground and ro-
tated about the human’s vertical axis without affecting any
important qualities of the motion. Because poses should be
compared in the canonical frame of reference, the algorithm
must recover this alignment transformation.

Our distance metric is modeled most closely after the one
introduced by Kovaret al. [6]. The distance metric,D(f , t),
is computed between framef andt in the database using the
joint positions of the poses in a small transition time win-
dow starting atf andt. The purpose of computing the met-
ric over a window of frames is to ensure that velocity mis-
matches between the two frames are penalized in the calcu-
lated metric. A coordinate transformation,T(f , t), is com-
puted to alignf and t in the first frame of the window so
each pose has matching translation in the ground plane and

vertical axis rotation. The metric is computed as follows:

D(f , t) =
WS

∑
i=0

J

∑
j=0

w j
∥∥p(f + i, j)− (T(f , t)p(t + i, j))

∥∥2
(1)

where WS is the size of the transition window,J is the num-
ber of joints in the character,w j allows for weighting the im-
portance of each joint,p(f , j) is the global position of joint
j at frame f in x,y,z coordinates, andT(f , t) is the coordi-
nate transformation that maps framet to frame f .

An edge connecting two nodes (frames) in the motion graph
is added whenever the distance between the two frames is
below a specified threshold. This threshold may be varied to
balance the transition smoothness with the size and versatil-
ity of the graph. Typically, it is empirically set so that transi-
tions exhibit no visual discontinuities nor physical anoma-
lies. For rendering at runtime, transitions are blended over
a small time window using a sinusoidal “ease-in/ease-out”
function to smooth the discontinuity between the two mo-
tion streams.

Once the distance metric has been calculated between all
frames, we employ a pruning strategy adapted from [5,6] to
remove troublesome edges from the graph; this operation is
to avoid the problem of generating paths through the motion
graph that cause the character to get stuck in a small sub-
set of the motion database. We remove sinks and dead-ends
in the graph by keeping only the largest strongly-connected
component (SCC) of the graph, and this can be performed
efficiently [8].

2.3. Evaluating actions

We now present a metric to score the cost for a human to
move through an environment while performing a particular
behavior, where each path is generated by a motion graph.
The full set of paths is sampled using a stochastic algorithm
which converges on a final cost map for the space. An ex-
tension to the algorithm is also presented to handle obsta-
cles that may be present in a real environment.

2.3.1. Scoring animation sequences

Given a motion capture graph, we can generate candidate
sequences of the character performing each behavior that
are visually smooth and lifelike. These sequences, or paths,
consist of a series of frames and transitions created by
traversing the motion graph. Each sequence represents a
possible chain of motions that the human could have exe-
cuted to reach the goal position. To compute the cost of ex-
ecuting a sequence, we examine two criteria: (1) time cost,
which is directly proportional to the path length in frames;

Figure 4. The Monte Carlo sampling of paths through the motion graph iteratively approximates the cost map.
Light and dark color spheres indicate high and low physical cost according to our metric. The first panel shows
a single path through a motion graph while the subsequent panels show how additional iterations contribute to
convergence. As yet unexplored regions of the world are indicated by smaller spheres.

(2) goal achievement—how well the path achieves the de-
sired goal state. The cost metric is

C = F +α‖r(x,y)−g(x,y)‖2 (2)

whereC is cost,F is path frame length,r(x,y) is the charac-
ter’s position, andg(x,y) is desired goal position. The path
cost is dominated byF which represents the time cost re-
quired for the character to reach a given location; the sec-
ond term penalizes paths that terminate farther away from
the desired goal. Increasing the discretization of the envi-
ronment reduces the magnitude of the penalty term since
all paths that fall within a grid cell are very close to the goal
but increases the time required to generate the cost map. The
experiments described in Section 3 were run withα = 0.0.
Note that this cost is complementary to the distance met-
ric that we use when assembling the motion graph; because
we know that every sequence is guaranteed to be smooth
and human-like within a certain threshold, we omit smooth-
ness from our path scoring criterion.

2.3.2. Calculating the cost map

To extract the cost of performing a behavior for a given
set of constraints, we “unroll” the motion graph to create
a cost map over the environment for a given behavior. The
map size should be large enough to accommodate the re-
gion over which the planner may require cost estimates, and
sampled at sufficient resolution to ensure that discretization
errors do not eliminate solutions. For example, a map cov-
ering a 50’×50’ area at a resolution of 10×10 corresponds
to a grid with 100 equally-spaced cells, each 5’×5’ in size.

The algorithm stochastically samples the set of valid paths
to move through the environment using the selected behav-
ior and annotates each cell with the cost of the best path

through that cell. Edges in the graph may optionally be dis-
abled if the planner wishes to enforce constraints such as a
maximum velocity for the character. The basic steps of the
algorithm are as follows:

• Disable edges in the graph according to constraints
provided by the planner, eliminating illegal actions.

• Estimate a reasonable maximum search depth of the
graph (dependent on desired map size) to bound the
search. Paths greater than the estimated maximum
depth are not considered.

• Perform a Monte Carlo sampling of the motion path
space, updating each cost map cell’s score (according
to the metric described in Section 2.3.1) along the can-
didate paths. Random paths are repeatedly generated
until the cost map converges to a stable configuration.

We adopted this strategy due to the high branching factor of
the motion graph and the necessity to simultaneously eval-
uate every potential cell in the cost map’s space. Since a
real human’s movement is highly variable, making general
early pruning decisions is difficult. Exhaustively searching
the graph using breadth-first search is prohibitively expen-
sive, and more directed search strategies (e.g., A*) are inap-
propriate since a search would need to be initiated for each
cost map cell. If computation time is limited, the Monte
Carlo search also has the desirable property that it may be
terminated early to produce an approximation of the final
cost map. Figure 4 shows a visualization of the search pro-
cess from within our simulator.

Our previously computed cost maps are invariant to an
agent’s position and orientation because they can be embed-
ded with the agent anywhere in an environment. However,
they do not reflect the true physical cost for the agent in the
presence of obstacles. In our solution, if there are obstacles

in the environment, candidate paths that enter obstructed re-
gions are pruned to eliminate physically impossible paths.
For a complex environment, the simulator must enforce be-
havioral constraints to ensure that candidate paths do not vi-
olate the terrain requirements (e.g., chasms must be crossed
with jumping or crawlways traversed with crawling). These
constraints are checked during the search to eliminate in-
valid paths.

In presence of obstacles, the cost map is no longer invari-
ant to starting position and orientation since its costs are
only correct for a character in the same position relative
to the obstacles. One solution would be to cheaply com-
pute a small low resolution cost map at run-time to address
the current state of the character that the planner is consid-
ering; another idea is to pre-compute cost maps at choice
points in the environment where the planner is unlikely to
be able to use the previously computed generic cost maps.
The generic cost maps may be used by the planner to ar-
rive at these choice points. We plan to test these strategies in
future work. For a very complicated environment, the cost
model should be computed at run-time for a few regions of
interest rather than building a cost map over the entire envi-
ronment.

3. Results

Here we present cost models for a diverse population of sol-
diers executing movement behaviors and demonstrate how
modeling physical variability creates behavioral variability
in MOUT scenarios.

3.1. Comparative cost models

To develop our cost models, we captured data from a single
human subject (a male college student) performing various
behaviors required for the execution of team tactical maneu-
vers: walking, running, sneaking, taking cover, rising from
the ground, using communications equipment, hand signal-
ing team members, inspecting areas, and probing for booby-
traps. Using the human data and the algorithms described in
Sections 2.3.1 and 2.3.2, we built a motion graph that gen-
erates smooth animations of the MOUT soldier performing
various behaviors.

In the first scenario, we model the cost of the MOUT soldier
running around an obstacle, to determine the time tradeoffs
between having the soldier run around a hazardous area vs.
other plans of action (sneaking or probing for booby-traps).
We restrict the animation system to using behaviors labeled
with the “running” descriptor and represent the hazardous
area as an obstacle to prevent the system from simulating

paths that cross the area.

We compare our motion-capture based cost model to the
popular distance-based cost model used by robotic path
planners. Figure 5 shows a cost map generated using the
grassfire transform [9, 10] on a discretized version of the
space, along with the “running” cost map created with the
human motion capture data and the cost map of the “sneak-
ing” behavior. The cost map generated by grassfire is shaded
uniformly dark to light with distance from starting position,
reflecting a belief that moving in any direction is equally
feasible. This simple distance-based approximation is not
consistent with observed human behavior; also agents us-
ing this approximation predictably move to the closest des-
tination. Agents using the cost map models derived from
human data will exhibit natural variance.

3.2. Modeling physical variability

To model a variable population of MOUT soldiers, we gen-
erate separate cost maps for each soldier (per behavior). Dif-
ferent cost maps can either be generated at the data collec-
tion phase by using different actors or by directly editing the
motion graph. Although for a small motion graph, it is pos-
sible for the agent designer to edit the graph by hand, elim-
inating undesirable exemplars, we believe that it is more ef-
ficient to automatically disable edges in the graph accord-
ing to criteria set by the designer. The final cost map only
considers the subset of the graph that obeys the design con-
straints. Any metric that can be calculated within a small
frame window can be used to automatically edit the motion
graph. For instance, when modeling wounded characters, it
might be desirable to eliminate certain stances or gaits by
evaluating character orientation in each frame.

For the MOUT domain, we created a diverse group of sol-
diers from a single collection of motion capture data. Multi-
ple cost maps were rapidly generated by imposing velocity
constraints on frame transitions and stochastically eliminat-
ing transitions that fell outside the desired velocity range.
Figure 6 shows the running cost maps for two agents in a
heterogeneous team of MOUT soldiers. The cost map for
Soldier A (left) was created from the original, unculled mo-
tion graph; Soldier B’s cost map was created from a motion
graph where high velocity transitions (> 20) were elimi-
nated with a probability of 0.9. In the next section we de-
scribe how to use these cost maps to produce behavioral
variability in a MOUT scenario.

Figure 5. Comparative predictions of different cost models in a region with one obstacle. S denotes the char-
acter’s starting square; the obstructed region is white outlined in black. Costs increase as squares change
from dark to light. The left panel shows the simple distance-based model of running generated with the grass-
fire transform. The middle panel shows the cost model of the running MOUT soldier generated with human
motion capture data. The right panel shows the cost map generated for the sneaking behavior using the mo-
tion capture data; the sneaking behavior produces a lighter cost map due to the greater time cost associated
from sneaking and is not related to the running cost map in a strictly linear manner. Note the cost asymme-
tries in the human data, compared to the grassfire transform which predicts that moving the same absolute
distance in any direction will cost the same.

Figure 6. Cost maps for a heterogeneous team of
MOUT soldiers generated from a single collection
of motion capture data. The agent’s starting lo-
cation and facing is marked with S; the potential
threat zone is the bottom left quadrant.

3.3. Creating behavioral variability

To make the MOUT soldiers effective opponents, we must
create behavioral variability from physical variability. In
Figure 6, we examine the behavior of a two different MOUT
soldiers, equipped with different cost maps, in the same sce-
nario. In the scenario, the team plan calls for the soldier to
choose a cover position near the building (marked in white
with the black border) and await communication from his
teammates; the expectation is that threats might arrive from
the bottom left quadrant. Based on his internal cost map

(left), Soldier A chooses a location near Position 1 away
from the more expensive, lighter squares marked by 2. In
that same situation, Soldier B (equipped with the right cost
map) would choose the cheaper region marked by 2. We ex-
plored two selection strategies: (1) having the soldiers con-
sistently move to the cheapest absolute cost location or (2)
weighting locations by the inverse of the cost function and
randomly selecting squares based on the weight (giving the
agent a higher probability of moving to a cheaper square). A
typical agent using a distance-based cost model would pre-
dictably select location (3). A naı̈ve agent with no model
might randomly select between all strategically acceptable
positions which creates an unpredictable opponent but an
unpleasantly chaotic teammate; our soldiers analyze the sit-
uation using their cost maps which gives them consistency
without absolute predictability.

Note that the cost map only provides information about
the agent’s physical capabilities. Any reasoning about line
of sight, rules of engagement, and team objectives, must
be handled by the planner or other separate modules that
feed into the the central planner. We envision the physical
cost maps as forming one level in a multi-layered reason-
ing architecture; in situations that are strongly dependent
on the agent’s physical abilities (e.g., jumping a chasm) the
cost map will dominate the input from other modules, but
in some situations the cost map could be ignored due to

Figure 7. The custom-made soldier model de-
signed for our Unreal Tournament MOUT simu-
lation. Using the Unreal Tournament user inter-
face, players are able to control the soldier bots,
navigate the environment and communicate with
other players using hand-signals or text commu-
nication.

other strategic considerations. Often the cost map serves as
a moderator, rather than a determiner of behavior, allowing
the agent to select between otherwise equivalent actions.

3.4. Generating human-like behavior in the absence of
physical models

To directly monitor the performance of humans in MOUT
scenarios, we developed a customized version of Unreal
Tournament. By default, the synthetic entities (bots) in Un-
real Tournament follow navigational nodes, an invisible
network of markers that links all traversable regions. The
main weakness of the navigational node approach is that
the nodes must be manually inserted by the map designer.
Best and Lebiere [11] have demonstrated an algorithm for
exploring Unreal Tournament maps using bots and build-
ing spatial representations that do not rely on navigational
nodes. Our approach builds a representation by directly ob-
serving human players. The modified Unreal Tournament
server records the location, orientation, and state of play-
ers at 0.5 second intervals as they navigate the environment.
Team maneuvers were studied by having multiple players
connect to a common server. Although this data did not pro-
vide information as to why humans preferred one location
over another, it allowed our bots to utilize these paths in
their planning instead of relying on A* searches over land-
marks in the navigational node network. However when our
strategic objectives included areas not previously traversed
by human player, our planner was left with no paths to fol-
low and without a clear preference model. In contrast, phys-

ical cost maps can be generated off-line to span all areas and
behaviors; this provides a more complete basis for agent
planning. Therefore, our future work will explore hybrid
strategies that combine the strengths of the two approaches.

4. Related Work

The central motivation for our work is the problem of de-
veloping realistic agents to participate in human training,
either as computer generated forces in military simulations
or immersive virtual environments. Wray and Laird’s dis-
cussion [1] of the need to introduce variability into hu-
man behavior modeling motivated certain aspects of our re-
search, as well as Rickel and Johnson’s work [12] on build-
ing virtual humans for team training. Much work on lifelike
agents has been done by the conversational agents commu-
nity; see [13] for an overview.

Reitsma and Pollard [14] first introduced the idea of un-
rolling a motion graph. Their work can assist in the cap-
ture process by suggesting data that might help fulfill the re-
quirements of a particular environment or indicate that cer-
tain data is redundant and unnecessary. Search techniques
on motion graphs have been used to synthesize smooth hu-
man motion that closely follows a given path [5, 6] and
to paint desired positional and behavioral constraints on a
timeline [4]; in this paper we focus on the use of motion
graphs to deduce the physical capabilities of a human from
a spanning dataset of animation sequences. Funge, Tu, and
Terzopoulos [15] couple cognitive modeling with animation
techniques to reduce the burden on human animators. By
cognitively empowering the characters, they make the an-
imation task easier for the animator who need only spec-
ify a sketch plan for the animation sequence; in contrast, we
focus on the task of improving decision-making and plan-
ning by incorporating costs extracted from motion capture
sequences.

Other researchers have attempted to simulate or model mo-
tion based on human data. Although data isn’t readily avail-
able for some of the physical endeavors that we’ve exam-
ined (e.g., sneaking), walking and running are relatively
well understood behaviors. Hodgins [16] developed a rigid
body model of a human runner with seventeen segments
and thirty controlled degrees of freedom which she com-
pared to video footage of human runners and biomechan-
ical data. Fajen and Warren [17] have proposed a biologi-
cal model of walking obstacle avoidance based on compu-
tations of goal angle and obstacle angle in which goals and
obstacles are represented as attractors and repulsors for a
second order dynamical system.

5. Conclusion and Future Work

In this paper, we demonstrate that our methodology for
modeling an agent’s physical capabilities can be used to
create a diverse population of agents capable of exhibiting
behavioral variability in MOUT scenarios. By precomput-
ing cost maps for actions and areas of interest, the algo-
rithm provides the planner with a sound basis for select-
ing one behavior from a set of equivalently goal-achieving
actions. We also present an alternate approach of acquir-
ing and incorporating data from subjects to create “human-
like” behavior that does not require the use of a motion cap-
ture studio. We believe that populating our simulated world
with diverse agents creates unpredictable opponents and re-
alistically variable teammates. For future work, we are de-
veloping teamwork models that account for variation be-
tween team members to enable our teams to leverage their
strengths and minimize their weaknesses. By calculating
physical cost maps for team members, we can more effec-
tively solve the role allocation problem of assigning team
members to tasks.

Acknowledgements

We thank Reid van Lehn for his Unreal Tournament de-
velopment work, Mike Lu for his efforts building terrain
maps, Rahul Sukthankar for his insightful comments, and
the CMU Motion Capture Lab personnel for capturing and
processing our data. This work has been supported by ONR
grant N00014-02-1-0438 and NSF grant EIA-0196217.

References

[1] R. Wray and J. Laird. Variability in human behavior mod-
eling for military simulations. InProceedings of Behav-
ior Representation in Modeling and Simulation Conference
(BRIMS), 2003.

[2] T. Balch. Behavioral Diversity in Robot Teams. PhD thesis,
Georgia Institute of Technology, 1998.

[3] G. Sukthankar, M. Mandel, K. Sycara, and J. Hodgins. Mod-
eling physical capabilities of humanoid agents using motion
capture data. InProceedings of International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
2004.

[4] O. Arikan, D. A. Forsyth, and J. F. O’Brien. Motion synthe-
sis from annotations.ACM Trans. Graph., 22(3):402–408,
2003.

[5] J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard. Inter-
active control of avatars animated with human motion data.
In Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, pages 491–500. ACM
Press, 2002.

[6] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In
Proceedings of the 29th Annual Conference on Computer

Graphics and Interactive Techniques, pages 473–482. ACM
Press, 2002.

[7] O. Arikan and D. Forsyth. Interactive motion generation
from examples. InProceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive Techniques,
pages 483–490. ACM Press, 2002.

[8] R. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal of Computing 1, pages 146–160, 1972.

[9] H. Blum. A transformation for extracting new descriptors
of shape. InProceedings of Symposium Models Perception
Speech Visual Form, 1964.

[10] Y. Xia. Skeletonization via the realization of the fire front’s
propagation and extinction in digital binary shapes.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
11(10), 1989.

[11] B. Best and C. Lebiere. Spatial plans, communication, and
teamwork in synthetic MOUT agents. InProceedings of Be-
havior Representation in Modeling and Simulation Confer-
ence (BRIMS), 2003.

[12] J. Rickel and W. Lewis Johnson. Extending virtual human
to support team training in virtual reality. In G. Lakemeyer
and B. Nebel, editors,Exploring Artificial Intelligence in the
New Millenium. Morgan Kaufmann Publishers, 2002.

[13] J. Cassell, J. Sullivan, S. Provost, and E. Churchill, editors.
Embodied Conversational Agents. MIT Press, 2000.

[14] P. Reitsma and N. Pollard. Evaluating and tuning motion
graphs for character animation. Technical Report CS04-04,
Brown University, 2004.

[15] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling:
Knowledge reasoning, and planning for intelligent charac-
ters. InProceedings of SIGGRAPH 99, 1999.

[16] J. Hodgins. Three-dimensional human running. InProceed-
ings of IEEE Intenational Conference on Robotics and Au-
tomation (ICRA), 1996.

[17] B. Fajen and W. Warren. Behavioral dynamics of steering,
obstacle avoidance, and route selection.Journal of Experi-
mental Psychology, 29(2), 2003.

Author Biographies

GITA SUKTHANKAR is a doctoral candidate in the
Robotics Ph.D. program at Carnegie Mellon Univer-
sity. She holds an A.B. in psychology from Princeton
University and an M.S. in Robotics from CMU. She has re-
cently resumed her Ph.D. studies after a 2 year stint of
working as a researcher with the Compaq Cambridge Re-
search Lab in the mobile computing group. Her research in-
terests include teamwork, planning, and simulated game
environments.

MICHAEL MANDEL recently graduated from Carnegie
Mellon University with a B.S. in Computer Science. He is
currently pursuing a Masters degree at CMU in Computer
Science while working as a part-time contractor for Apple
Computer, developing 3D technology for future products.

His research interests include data-driven motion synthe-
sis, physical simulation of human motion, interactive inter-
faces for character animation, and learning human capabil-
ities from motion capture data.

DR. JESSICA HODGINS is an Associate Professor in
Computer Science and Robotics at Carnegie Mellon Uni-
versity. She received an NSF Young Investigator Award,
a Packard Fellowship and a Sloan Foundation Fellowship.
She was editor-in-chief of ACM Transactions on Graph-
ics from 2000–2003 and Papers Chair of SIGGRAPH 2003.
Her research focuses on the coordination and control of dy-
namic physical systems, both natural and human-made, and
explores techniques that allow robots and simulated humans
to control their actions in complex and unpredictable envi-
ronments.

DR. KATIA SYCARA is a Research Professor in the
School of Computer Science at Carnegie Mellon Univer-
sity and Director of the Advanced Technology Lab. She
has been the PI for many multimillion-dollar grants from
DARPA, AFOSR, ARDA, ONR, NASA, NSF and in-
dustry. Dr. Sycara was General Chair of Autonomous
Agents 1998, founding editor-in-chief of the Journal of Au-
tonomous Agents and Multiagent Systems, and is on
the editorial board of four other journals. She has au-
thored over 200 technical papers and book chapters on
multi-agent systems. Dr. Sycara is a AAAI Fellow and re-
cipient of the ACM Agents Research Award.

