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Abstract

Highly interactive characters that behave in situationally appropriate ways
are an important goal of researchers, film makers, and game developers. For
example, synthesizing believable boxers would involve representing the stylis-
tic bobbing and weaving motions while generating realistic dynamic responses
to blows that are given and received, including the resulting interactions with
the boxing ring. Realizing that no single motion synthesis technique is perfect
for every situation, we propose a hybrid system that favors the one most suited
to the current objectives. Motion graphs are an effective tool for synthesizing
realistic and easily directable characters that accurately reproduce the stylistic
nuances of human motion. However, because motion graphs rely on splicing
data obtained before runtime, they are not adequate for applications where the
external forces or detailed interactions with the environment cannot be pre-
dicted. Simulation allows the physical interactions between a character and
its environment to be modeled realistically, but does not provide a wide range
of behaviors because of the difficulty in constructing control systems for com-
plex behaviors. This thesis combines the complementary strengths of these two
techniques so that complex animation tasks in novel environments may be syn-
thesized interactively. Our system attempts to reasonably resolve when either
technique is most appropriate and provide the facilities to transition between
them as the character’s goals and interaction with the environment evolve. To
ensure these transitions are smooth, the Approximate Nearest Neighbors search
algorithm is used to locate a good correspondence between the simulation and
the motion database. Joints are actuated by physical controllers to guide the
simulation near existing motion found using this correspondence search. These
proportional derivative controllers are also used to add human-like subtlety to
the simulated motion in a biomechanically inspired way for behaviors such as
protective falling. We demonstrate and evaluate the power of this approach
by switching between simulated and data-driven tasks in a context dependent
way, triggered by physical interactions with the virtual human. As simulation
techniques improve, such an architecture can support the future goal of fully
autonomous simulated characters, while still being able to fall back on motion
data for hard to simulate behaviors.
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Chapter 1

Introduction

An ambitious goal shared by many researchers is that of creating autonomous virtual char-

acters capable of generating motion for any behavior, in any context, with the subtlety

and style of real human motion. Film production, videogames, and virtual training envi-

ronments could all benefit from virtual characters that can adaptively generate human-like

motion for any situation, even when detailed interaction with the environment and other

characters is necessary. Approaches to the problem of synthesizing human motion for this

purpose can be roughly divided into two categories:

1. Collect and organize a large amount of motion data covering all the necessary behav-

iors and their natural transitions. Animator-specified keyframes and motion capture

data are among the sources of motion data for this data-driven approach.

2. Generate the motion procedurally using some high-level behavioral logic coupled

with a low-level motor control technique. Inverse Kinematics and physical simula-

tion are example techniques that could provide the low-level motor control in this

category.

Despite the power of these approaches, researchers have yet to create autonomous charac-

ters without limitations with respect to their abilities and/or natural human-like qualities.
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As a motivating example, videogames today often use animator keyframes and/or mo-

tion capture data to drive most of the character’s behaviors because they accurately cap-

ture the stylistic nuances of human motion. Unfortunately, the characters sometimes look

unrealistic when interacting with dynamic environments because their movements are pre-

determined by this static motion data. For example, a boxer’s reaction to an opponent’s

punch should account for the strength, location, and direction of the blow in addition to

how the body will collide with the surrounding boxing ring. This a difficult problem to

model with motion data because these factors create an almost infinite set of possible re-

sponses that cannot be easily predicted until runtime. More recently, “ragdoll” simulation

has been introduced to physically model the detailed interactions between the character and

the environment. Unfortunately, the motion has a lifeless, passive quality because it lacks

control systems to generate active, natural behavior. There is also no obvious way to seam-

lessly return character control to motion data after the simulation has started because the

pose of the character can change in unpredictable ways. The relative strengths of motion

data and simulation motivate the need to reasonably understand when to switch character

control between the either technique in a context sensitive manner.

No single motion synthesis technique previously developed has proven perfect for ev-

ery situation. We therefore propose a hybrid system capable of utilizing more than one

motion synthesis technique, favoring the one most suited to the current objectives. Such a

hybrid system would allow the goals of the character and the limitations of the available

synthesis techniques to guide the selection of which technique is most appropriate. Figure

1.1 shows an example of the high-level flow of character control for a videogame utilizing

this methodology.

1.1 Problem Statement

We focus our exploration of a hybrid motion synthesis system on utilizing physical simu-

lation and data-driven motion synthesis in a context dependant way. We explore how and
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Figure 1.1: A videogame using our hybrid methodology might make transitions between

data-driven and dynamics-based control depending on how the character interacts with the

environment and the system’s ability to simulate the requested behavior. Moving back to

motion data control requires a correspondence step that registers the current simulated pose

with closely matching ones found in the motion database.

when to allow character control to switch between these two complementary techniques to

enable the most extensive repertoire of behaviors possible. In addition, we wish to ensure

that our simulated behaviors capture as much human subtlety and situational appropriate-

ness as possible. Our simulated behaviors will focus on reactive responses to external forces

that create a dramatic loss of balance in the character.

The main technical challenges of this project are

• Quickly finding closely matching frames in a motion database to poses generated by a

simulation:The simulation is likely to change the pose of the character considerably

and this change cannot be predicted beforehand because it evolves at runtime as the

character interacts with the environment. If we are to allow character control to return

to motion data, a fast search technique is necessary to build a correspondence with

an existing motion database.

• Ensuring that the simulation settles in a configuration that is close to existing motion
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data: The simulation must guide the pose of the character into configurations that

are likely to allow motion data to take over character control, while still retaining its

behavioral appropriateness.

• Developing controllers that allow the simulation to generate natural human behav-

ior: Control systems that demonstrate the coordination and subtlety of human motion

are difficult to develop, but are critical to the believability of autonomous characters.

We are interested in developing behaviors that are manageable to create control sys-

tems for, but are particularly difficult to represent using motion data. New behaviors

should be easy to add as simulation techniques are developed, requiring less reliance

on pre-recorded motion data.

This thesis aims to develop solutions to these challenging problems using a variety of tech-

niques that build on work from the graphics, biomechanics, robotics, and artificial intelli-

gence literature.

1.2 Techniques

Our hybrid system first requires the availability of motion synthesis techniques to repro-

duce human motion. We utilize motion graphs, which have recently become a popular

data-driven technique because they allow synthesis of easily directable motion [1, 27, 32].

By automatically processing a large unlabeled database of motion capture into an easy-to-

use graph structure, motion graphs can splice together bits and pieces of data to synthesize

motion in real-time that is subject to a variety of user-defined constraints. Because mo-

tion graphs automatically determine the ways in which motion can be rearranged, they are

especially useful for generating natural transitions between behaviors. Unfortunately, mo-

tion graphs suffer from the same problems that most data-driven techniques do when the

characters are embedded in a dynamic environment. These problems include physically

unrealistic responses to external forces, body parts clipping through environment geometry
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Figure 1.2: This sequence shows how our fall controller uses biomechanically inspired

rules to generate protective behavior used to avoid injury.

due to inadequate collision handling, and motion blending artifacts such as foot sliding.

The second part of our hybrid system, physical simulation, provides a way to model the

interaction between a character and its environment in ways that cannot be anticipated at the

time motion data is captured or keyframed. We model interactions between the body and its

environment, subject to various internal and external forces, using a rigid body dynamics

engine. The difficulty with using simulation for human behaviors is developing robust

control systems that reactively generate realistic human behaviors. We use proportional-

derivative controllers that approximate internal muscle actuation to drive the body towards

target postures determined by a high-level state machine. The hybrid system allows us

to focus on behaviors that are manageable to simulate, allowing the data-driven approach

to handle hard to simulate behaviors, such as a balanced walking gait. In particular, we

develop a biomechanically inspired fall controller that can generate protective behavior

when arbitrary external forces cause the character to lose balance. Figure 1.2 shows an

example simulated motion generated by the fall controller. The fall controller serves as a

first step towards a reactive and realistic human when our hybrid system is using simulation

for character control.

The core feature of the hybrid system is switching between these two synthesis meth-

ods. Moving to simulation from our data-driven approach is relatively straight forward, but

because the simulation can change the posture of the character in unpredictable ways, the

return to data-driven control is challenging. Thus, we focus on building a correspondence

with the motion database so that motion near the current simulated pose can be selected
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when character control must transfer from simulation to data-driven synthesis. We look

at how a nearest neighbor search algorithm can exploit relationships in the motion data to

speed up this correspondence process. Because an autonomous character is expected to

have an extensive repertoire of behaviors, the motion database can be quite large, requiring

a search method with performance that scales well with the size of the database. We utilize

the Approximate Nearest Neighbor algorithm to maintain real-time performance, even for

large databases. The result of this fast search is the ability to give the simulation a hint as

to the body pose that it should aim for so that character control can smoothly transfer to

the motion data matched by the search. Special physical controllers are used to push the

simulation toward the result of the correspondence search as a more physically grounded

alternative to simple blending. For example, our falling controller leaves the character in a

prone position. This correspondence process can be used to find and settle the body pose

near clips of motion that generate the hard to simulate process of returning to a balanced,

upright posture.

We assess our system’s results by examining the quality of transitions made between

motion graph controlled tasks and simulated responses triggered by an extensive, but con-

trolled set of external forces. Even when the character experiences a loss of balance, our

system can recover from the simulated response back to tasks synthesized by our data-

driven technique. The simulated response reasonably approximates what a real human

might do in a variety of situations.

1.3 Contributions

The main contributions of this work are summarized as follows:

• A hybrid system capable of moving between motion synthesis techniques; motion

graphs and controlled physical simulation in particular. The system is able to select a

technique that complements the required task, allowing it to support an autonomous
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virtual character.

• A biomechanically inspired physical controller that is able to generate responses to a

loss of balance in a virtual character.

• The use of controllers to drive a simulated character into a pose that is near existing

motion data so character control can be transferred to a data-driven approach.

• The application of a fast search technique to the problem of efficiently searching a

large motion database for motions near a query posture.

1.4 Thesis Overview

Following a discussion of related work in Chapter 2, we cover two techniques for synthe-

sizing human motion: motion graphs and physical simulation. In Chapter 4, we discuss

how to build a correspondence between simulation and motion data as well as how to carry

out the transition from each technique to the other. Chapter 5 describes how we gener-

ate human behaviors, like protective responses to falling, using physical simulation while

Chapter 6 presents the results generated by our hybrid system. We conclude the thesis in

Chapter 7 with a discussion of future areas of research.
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Chapter 2

Background

Reproducing human motion in a realistic and controllable way has long been a goal of re-

searchers, film makers, and game developers. The hybrid system presented in this thesis

was inspired by researcher’s work on the problem of animating humans using kinematic

and/or dynamics-based approaches. Kinematics refers to approaches that directly specify

the pose of the human over time, such as artist keyframes and motion capture data. Using

large quantities of pre-existing motion data for synthesis, as we do, is known as data-driven

motion synthesis. When animating characters using simulation, researchers in biomechan-

ics, robotics, and computer animation delegate varying degrees of importance to believ-

ability, style, accuracy, and functionality. While biomechanists are most concerned with

accuracy and roboticists with functionality, computer animation, like our work, is more

concerned with believability and style.

This chapter focuses on the related works of other researchers, specifically on synthesis

of human motion using data-driven and simulation-based approaches. We first look at

data-driven approaches and how they evolved from simple motion editing into automatic

techniques that synthesize motion using pre-processed databases of motion. We finally

look at how physical simulation has been used to generate human motion, emphasizing

controller and trajectory optimization based approaches.
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2.1 Data-driven Synthesis of Human Motion

Our kinematic motion synthesis technique generates motions subject to user-directed con-

straints using a large motion database. While user-directed constraints can be solved an-

alytically using procedural approaches like inverse kinematics [14, 19, 23, 72] and con-

straints such as where the hands or feet should be, we focus on a data-driven approach

because it reproduces human motion more accurately. Many researchers have influenced

this kind of work through techniques that synthesize new motion by processing and editing

existing motion. Even though motion capture technology can reproduce large amounts of

human motion fairly easily, it is difficult to adapt existing motion to new situations, making

it reusable. The simplest motion editing techniques involve simple averaging of animation

curves, called motion blending. Early work by Perlin [45] used simple blending to generate

transitions between motions and semi-random noise functions to augment the motion with

perceived personality. Displacement mapping techniques were introduced by Witkin and

Popovíc [70] to warp the animation curves of existing motions to pass through keyframe

constraints using a blending scheme. For example, a normal walking motion could be mod-

ified with this technique to bend through a doorway. Bruderlin and Williams [5] introduced

similar curve editing techniques, as well as the concept of timewarping motions to align

them temporally before blending. Lee and Shin [33] later used hierarchical displacement

maps and inverse kinematics to warp motions to specified constraints and adapt motions

to characters with different proportions. We use simple blending techniques like these to

perform transitions between motion segments.

Other blending schemes were later developed that explored more complicated blend-

ing weights to produce better transitions and allow the creation of parameterized motions.

Unumaet al. [66] looked to the Fourier domain to produce blend weights while Roseet

al. [53] and Gleicher [15] used spacetime optimization to generate transitions between

motions that minimized joint torque. For a more detailed survey of some of these earlier

constraint-based, motion editing techniques, see Gleicher [17].
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Using a number of aligned example motions and carefully varying the blend weights,

an intuitive space of parameterized motions can be created by interpolating between the

example motions. Roseet al. [52] used manually aligned example motion clips and radial

basis function interpolation to synthesize motions parameterized on emotions like happi-

ness and anger as well as on locomotion qualities such as walking direction and speed.

Park, Shin, and Shin [44] developed this idea further by using a novel blending scheme to

generate parameterized motions from examples that are retargeted to new characters at run-

time. Interpolating example motions can also generate motion satisfying inverse kinematics

constraints such as hand position and kick height [54, 68]. Kovaret al. [25] demonstrated

automated methods of aligning example motions and generating parameterized blends of

example motions using registration curves, later extending this [26] to identify logically

related motions that do not necessarily contain similar poses. Parameterized motions using

related techniques are viable additions and/or alternatives to the synthesis techniques we

chose in our hybrid system. Staying truer to the original data, we chose a data-driven syn-

thesis technique that relies on splicing unaltered clips from a large motion database rather

than interpolating between a small number of example motions.

With the availability of larger motion databases, researchers have focused on methods

to organize the data to make the motion synthesis process more robust. Pullen and Bregler

[48] keyframed a small number of degrees of freedom and filled in the rest by matching

with lower frequency bands from a motion database, generating fully realized motions.

Some researchers have attempted to synthesize motion by capturing a state-based, statistical

model of large motion databases [4, 35, 64]. Because these techniques build abstractions of

the original data, they can sometimes lose important details present in the original data. We

therefore look at methods that give guarantees on motion quality by relying on rearranging

the original data. These approaches attempt to organize the motion database into a graph

structure that indicates relationships between pieces of data close enough to splice together.

Traditionally, game developers have generated this graph structure by a tedious process of

manually specifying potential transitions in the motion database [39]. Automatic methods
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for generating these transition graphs for animation were motivated by Schödl et al. [57]

with their work in generating seamless, infinitely looping video textures. Small windows of

frames were matched using a similarity metric to identify potential cuts that could be made

in an input video sequence without loss of visual continuity. These same ideas were later

applied to the development of automatic techniques that discover potential transitions in a

motion database, arranging the data into a motion graph for future synthesis [1, 27, 32].

We use motion graphs as our data-driven synthesis technique and describe them in detail in

Chapter 3.

While these blending and curve manipulation techniques are effective in many situ-

ations, they have several limitations. Data-driven techniques have limited flexibility in

situations that require complex physical interactions with the environment. Motions such

as dangerous stunts are difficult to capture and adapt to new environments without enforc-

ing physical laws between the environment and the character. We therefore look at how

physically based techniques for human motion were developed for these situations where

kinematic approaches are not sufficient.

2.2 Physical Simulation of Human Motion

Using physical simulation to drive the motion of a virtual human can give a level of phys-

ical connectedness to the environment that data-driven techniques cannot match unless the

motion was recorded precisely for a particular situation. Techniques that use physical sim-

ulation to generate human motion can be roughly divided into trajectory-based approaches

and controller-based approaches. We prefer controller-based approaches in our work as

they are more suited for interactive characters because of their computational efficiency.

However, we cover both here since either approach would be valid in a hybrid architecture.
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2.2.1 Trajectory-Based Approaches

Trajectory-based simulation techniques attempt to optimize for a physically realistic trajec-

tory from one point in the human figure’s state space to another. The user inputs a rough

sketch of the requested motion, such as starting and ending keyframes that are then used as

constraints in a search for a physically valid motion. Witkin and Kass [69] first introduced

such an approach to the graphics community with a simple hopping Luxo lamp. Because of

the highly underconstrained nature of many of these systems, the trajectories are often opti-

mized for properties such as minimum energy consumption, smoothness, and/or minimum

time. Humans have a large number of degrees of freedom, making them computationally

expensive to optimize for, thus many researchers have worked with simplified optimiza-

tion or human body models. Fang and Pollard [12] found that more efficient optimization

performance could be obtained by reformulating the optimization in a way that restricts

the use of joint torques in the objective function or constraints. Popović and Witkin [47]

showed how the optimization could be performed on a human model containing only the

important degrees of freedom and then transformed back onto a more complicated human

model. Safonovaet al. [55] explored how using principal component analysis to reduce the

dimensionality of the human body could both improve optimization performance and lead

to more natural looking solutions.

2.2.2 Controller-Based Approaches

A number of researchers have used physical controllers to generate motion for a variety of

human behaviors. Laszlo [30] created fully 3D controllers for periodic motions using an

open loop control system that produced parameterized and balanced motions for behaviors

such as walking. Hand-tuned feedback controllers have been demonstrated for simulating

such athletic behaviors as running, vaulting, and bicycling [22]. Hodgins and Pollard [21]

explored how scaling algorithms could be developed to adapt such simulated behaviors to

new characters, making controllers more reusable. Developing composable controllers also
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contributed to reusability as it allowed more complex behaviors to be derived from simpler

controllers applied in sequence. Wooten [71] first explored this idea by developing con-

trollers that generate the motion of human divers by sequencing individual controllers such

that the valid starting states of a controller matched the valid ending states of a previous

controller. Faloutsoset al. [11] further developed the use of composable controllers by

stringing together many behaviors like falling, standing, and balancing to create a virtual

stuntman. Developing these hand-tuned controllers is difficult, however techniques have

been developed to search for control rules using simulated annealing or genetic algorithms

[62]. Interactively controlling a physically simulated character is an important applica-

tion of physical controllers for virtual characters. Laszloet al. explored using intuitive

interfaces to allow users to take direct control of a simulated human to produce running,

climbing, and gymnastics movements [31].

As in many of the referenced works, we implement proportional-derivative controllers

as the low-level mechanism that drives the movement of our simulated behaviors. The low-

level details of how we implement physical simulation and compute controller torques is

covered in Chapter 3 while the details of our high-level simulated behaviors are discussed

in Chapter 5.

2.2.3 Hybrid Approaches

The ability to interface physically controlled behaviors with existing motion data, as our

hybrid system does, is important because it helps balance the strengths and weaknesses of

each technique. Playter used motion capture data to drive a simulated running behavior

during the underconstrained flight stage [46]. Kokkeviset al. [24] developed a system

that takes user-supplied keyframe data as input to a tracking controller that generates a

physically grounded representation of the input motion. Oshita and Makinouchi [43] also

use a tracking controller on input motion data, but model the concepts of comfort and

balance to dynamically react to external forces while maintaining balance. Similar work by

14



Zordan [73] allows characters to physically respond to external forces and smoothly return

to the tracked motion data so that realistic reactions to motion capture driven behaviors such

as boxing punches or table tennis swings can be made. This work differs from ours in that it

uses simulation exclusively (though it is driven by motion data), rather than allowing hybrid

control, and the responses are mostly small corrective ones compared to the responses to

dramatic loss of balance that our characters perform.

Shin et al. [60] took a more motion heavy approach of cleaning up blended motion

edits by dividing the edited motion into ground and flight stages and enforcing physical

constraints with hierarchical displacement maps. Most similar to our work is the hybrid

system developed by Shapiroet al. [58] that allows simulation and animation data to vote

for control of the character. This work only activates data-driven character control when

the simulation happens to fall sufficiently close to existing motion data. We use an efficient

search process to allow the simulated behavior to drive itself closer to motion data in a

physically grounded way, providing more flexible opportunities for character control to

switch between simulation and motion data.

2.2.4 Simulating Equations of Motion

Many software libraries are freely available to perform a rigid body simulation of a hu-

man. Some are more focused on the accuracy of the simulation, while others sacrifice

accuracy for speed. For instance, libraries may enforce constraints in a less strict manner

and contain mechanisms to estimate when a particular part of the system is close enough

to rest to stop simulating in order to obtain better runtime performance. We are interested

in simulating motion at interactive rates, so we are willing to make this trade for improved

runtime performance; one that biomechanists, for instance, would be less willing to make.

Commercial dynamics libraries such Havok [50] and NovodeX [40] have already been de-

ployed into popular commercial games such as Half Life 2, Max Payne 2, and the future

Unreal 3 engine technology. Meqon [20] has recently released a product offering commer-
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cial dynamics middleware for games with modules that support adding physical controllers

to characters. Many researchers have previously used SD/Fast [59] because it works with

a reduced coordinate description of the human to produce very efficient simulation code.

However, it lacks a convenient API, making it more difficult to integrate into a hybrid sys-

tem because it would require dynamically linking with an external executable in order to

continually activate the simulation at run-time.

There are also several freely available libraries with comparably robust features. NovodeX,

mentioned previously and particularly known for its speed, offers a free educational version

of its library. Tokamak [29] is another library freely available, excelling in efficient joint

constraints and handling of stacked bodies, however its API is fairly limited in its support

for developing physical controllers. We selected The Open Dynamics Engine (ODE) [63],

primarily developed by Russell Smith, because of its:

• Active development community

• Extendability provided by its open source license

• Broadly customizable API

• Integrated collision detection

• Real-time performance using its efficient iterative solver

We use ODE to simulate the equations of motion for a human body constrained to move

into natural configurations as well as to approximate muscle actuation at the joints using

torque-based controllers. The details of our dynamics-based approach for generating hu-

man motion using ODE are discussed in the next chapter.
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Chapter 3

Using Data-Driven and Dynamics-Based

Approaches For Motion Synthesis

Interactive systems that synthesize human motion often suffer from a conflict between the

need to reproduce subtle, stylistic nuances along with complex limb coordination and the

need to allow high-level directability. Realistic results require consideration of how the

character will adapt its behavior in response to the dynamic environment around it. Data-

driven approaches and physical simulation are two popular methods for synthesizing human

motion with complementary qualities achieving many of these requirements. This chapter

focuses on how each technique can be individually used to generate human motion. Motion

graphs are first introduced as a method to synthesize novel motions by reassembling small

clips from a large motion database. We then explain how to represent a simulated human

and control its parameters using feedback control systems. These techniques will be the

fundamental building blocks used to create the hybrid system described later in Chapters 4

and 5.
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3.1 Motion Graphs For Data-Driven Motion Synthesis

Motion capture is a reliable way toreproducerealistic human motion. The data alone

merely allows playback of the subject’s performance from the capture session in an envi-

ronment that is fixed in size and layout. Many editing techniques exist to modify data to

meet user constraints, however their effects are only reliable for small changes that do not

fundamentally alter the original motion. In applications where interactive control of a char-

acter is necessary in complex environments, simple editing is often not enough to adapt

existing motion to new situations. In such applications, we would like to reuse existing

motion data in to provide full control over the character’s navigation and behavioral style

within new environments.

Motion graphs were introduced [1, 27, 32] to provide a solution to this need for control

by automatically discovering the ways in which the original data could be reassembled

to produce natural looking motion. Instead of being restricted to a linear playback of the

motion clips, the algorithm automatically produces choice points where streams of motion

can be smoothly spliced to create novel motion sequences. Individual animation frames

act as nodes in a graph structure, with edges between two nodes indicating that a smooth

transition is possible between the two pieces of motion centered at these nodes. Because

the algorithm automatically detects potential transitions, the user does not need to capture

motions specifically designed to connect with each other. In the following sections, we first

discuss our kinematic representation for both the human skeletal structure and the motion

data followed by a description of how our motion graphs are constructed. We conclude by

detailing how to synthesize novel sequences of motion subject to user-defined constraints

through searching the pre-computed motion graph to resequence the data.
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Figure 3.1: Sixteen joints representing the skeleton structure used by our virtual humans.

The number of degrees of freedom we represent for each joint is also indicated.

3.1.1 Data Representation

Skeletal Structure

Our model of the human body is represented using a hierarchical set of rigid links connected

by joints defining each “bone” of an underlying skeletal structure. We model sixteen joints

on the body, each containing between one and three degrees of rotational freedom. The

root joint contains six degrees of freedom because it includes the global body position.

This hierarchical approach is preferred over others because by using relative joint angles

between bones, we implicitly constrain each body part to stay connected. In addition, a

skinned mesh can be animated without need to specify positions for individual vertices by

deforming its geometry to the underlying skeletal structure. Figure 3.1 shows the structure

of the joints used in our kinematic human model along with the number of degrees of

freedom we represent for each joint.
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Motion Representation

Our motions are defined as a continuous function,M(f), where at each framef is a param-

eter vector specifying the full posture and global position/orientation of a virtual human.

Each parameter vectorPf = (proot, qroot, ..., qhead) consists of the global position of the

root joint proot along with the relative orientation of each jointqi in its parent’s coordinate

system. Orientations are specified as unit quaternions. In reality, a discretized version of

M(f) is stored at a uniform sampling rate. The parameter vector for non-integer frames is

generated by interpolating between the surrounding samples to approximate the continuous

form of M(f). Interpolated samples are generated using linear interpolation on the global

position and spherical linear interpolation [61] on the quaternion rotations.

3.1.2 Data Collection / Processing

The human motion data was captured with a Vicon optical motion capture system. The

system has twelve cameras, each of which is capable of recording at 120Hz with images of

1000×1000 resolution. We use a marker set with 41 14mm markers that is an adaptation

of a standard biomechanical marker set with additional markers to facilitate distinguishing

the left side of the body from the right side in an automatic fashion. The motions are cap-

tured in a working volume for the subject of approximately 8’×24’. A subject is shown in

the motion capture laboratory in Figure 3.2. For the skeletal structure as described in sec-

tion 3.1.1, the subject’s limb lengths and joint range of motion are computed automatically

during a calibration phase. We resample the data to 30Hz and create a memory-mapped

representation to decrease memory requirements and improve file loading performance for

manipulating large databases of motion. We manually annotate the data to label individ-

ual domain-specific behaviors, such as walking, jumping, sneaking and crawling. Manual

labeling was tractable because single behaviors were usually captured in long clips and

many of our examples use variations of the same behavior. To create directable characters

utilizing a substantial set of behaviors and their natural transitions, a more automatic tech-
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Figure 3.2: A subject wearing a retro-reflective marker set in the CMU Motion Capture

Laboratory.

nique would be required. Semi-automated techniques have been proposed [2] to assist in

annotation by requiring a relatively small portion of the database to be manually labeled.

3.1.3 Constructing a Motion Graph

A motion graph is defined as a directed graph containing nodes representing individual

frames of motion and directed edges between nodes indicating that one frame of motion

may be a successor of another. Before our automatic algorithm is used to generate edges in

the graph, a trivial graph can be constructed with edges between each frame of the original

data, as shown at the top of Figure 3.3. To generate new motion, we need to discover

ways to increase the connectivity of this graph so that two pieces of motion data may be

spliced together by performing a transition at runtime. Because these transition points can

represent discontinuities in the data stream, it is important to select those that would give

the highest quality resulting motion. A distance metric, discussed in the next section, is

applied to each pair of frames in the motion database to determine whether the posture

of the character is close enough to allow a visually smooth transition. An edge is added

between two frames when they score low enough using the proposed distance metric, as
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Figure 3.3: The top of the figure shows a trivial motion graph containing only the original

clips of motion data. The bottom of the figure shows a possible graph after each pair of

frames is then checked for similarity to find transition points, using the distance metric

described in Section 3.1.3.

shown in the bottom of Figure 3.3.

Distance Metric

The key to building a motion graph is defining an appropriate distance metric between pairs

of frames in the database. The metric must ensure that the position and velocity of each

body part be sufficiently similar for the resulting motion to appear natural when the two

pieces of motion are joined. For instance, we would not want to allow a transition between

a forwards and backwards walking motion in a similar pose because of a mismatch in their

velocity characteristics. Because the data is captured in the global coordinate system of

the capture area, similar poses in different positions and orientations in the global space
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cannot be directly compared. When the ground is flat and uniform and only the character’s

feet are in contact with the ground, a motion is fundamentally unchanged if the root is

translated along the ground and rotated about the vertical axis. All of our data is captured

under these conditions, so it is reasonable to apply a transformation to each frame to align

them for comparison. We define this coordinate transformation,T (f, t), aligning the poses

at framesf andt in the motion database to create matching translation in the ground plane

and vertical axis rotation. This computation is achieved by ignoring the global translation

and finding the angle about the vertical axis that aligns the facing direction of framet to

that of framef.

Our distance metric is modeled most closely after the one introduced by Kovaret

al. [27]. The distance metric,D(f, t), is computed between framef andt in the database

using the joint positions of the poses in a small transition time window starting atf andt.

Comparison of joint positions are preferred over relative joint angles to preserve the visual

structure of the body in the analysis. The purpose of computing the metric over a window

of frames is to ensure that velocity mismatches between the two frames are penalized in

the calculated metric. The size of the window is chosen as the amount of time of a typical

transition (a 0.25 seconds worth of frames in most of our examples).T (f, t), as previ-

ously defined, is computed to alignf andt in the first frame of each window. This vertical

axis rotation is converted to a quaternion and concatenated with the global rotation of each

frame in the window starting at framet. The metric is then computed as a weighted sum of

squared differences of the position of each joint in the aligned frames. The equation used

to compute the metric is:

D(f, t) =
WS∑
i=0

J∑
j=0

wj

∥∥p(f + i, j)− (T (f, t)p(t + i, j))
∥∥2

where WS is the size of the transition window,J is the number of joints in the character,wj

is the importance weight of jointj, p(f, j) is the global position of jointj at framef in x,y,z

coordinates, andT (f, t) is the coordinate transformation that aligns framet onto framef

as previously described. Figure 3.4 shows example clips of motion, a visualization of two
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Joint Weight Joint Weight

root 0 thorax .1

lfemur .4 lowerneck .1

ltibia 1.0 upperneck .8

lfoot .1 lhumerus .4

lowerback .8 lradius .2

upperback .1

Table 3.1: Weights used by our distance metric to give more importance to visually sub-

stantial joints. The weights are symmetric left and right.

windows of joint positions, and the result of applying the coordinate frame alignment to

the two windows byT (f, t).

We would like the distance metric to extract perceptually acceptable transitions, how-

ever the optimal importance weights used forwj are not known. Measuring perceptually

acceptable motion is difficult, however, Reitsma and Pollard have explored perceptual met-

rics for measuring user sensitivity to errors in ballistic motions [49]. In general, there is

no known measure of the quality of edited motion. However, Bodenheimeret al. sug-

gested optimizing the weights based on selections made via human subjects and verifying

the results through cross validation and a user study [67]. While they found a set of op-

timized weights that worked well for their example motions, we have not found them to

work universally well for all behaviors. They weighted only four of the joints, the hips and

shoulders, which for some of our behaviors, missed important qualities of the motion. We

selected a set of weights that favor visually substantial joints and found them to work well

in practice over a variety of common behaviors. Table 3.1.3 contains our empirically tuned

weights.

Our distance metric is applied to each pair of frames to determine whether an edge

representing a valid transition should be added to the graph between the pair. An edge
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Figure 3.4: Panel 1 shows three example motion clips in the database. Panel 2 shows the

two candidate windows of frames starting at framesf andt to be compared for similarity

using by our distance function,D(f, t). The joint marker positions which are compared

are rendered in the bottom of the panel. Panel 3 shows the same two windows of frames

after the coordinate frames have been aligned. The metric takes a weighted sum of the

differences of these aligned marker positions.

25



connecting two nodes (frames) in the motion graph is added whenever the distance between

the two frames is below a specified threshold. This threshold may be adjusted to balance the

transition smoothness with the size and versatility of the graph. Typically, it is empirically

set so that transitions exhibit only small visual discontinuities. Edges tend to be similar

for nearby frames in the original motions, often causing a number of sequential frames to

become edges for a particular node. Thus, we keep only the edges representing the local

minima ofD(f, t).

Post Processing

Once the distance metric has been computed between every frame, we employ a pruning

strategy adapted from [27, 32] to remove troublesome edges from the graph; this operation

prunes edges that might cause the character to get stuck in a small subset of the motion

database.Sinksare nodes whose outgoing edges restrict reachability to a small subset of

the total nodes.Dead-endsare nodes that are not part of a cycle and would prevent the

generation of further motion. We removesinksand dead-endsin the graph by keeping

only the largest strongly connected component (SCC) of the graph. This operation can be

performed efficiently [65]. Figure 3.5 contains a simple example of how keeping the largest

SCC affects the motion graph. An example motion graph for an idle behavior containing

737 frames of original data was pruned to 599 nodes with 237 transitions.

3.1.4 Synthesizing Motion at Runtime

Once the graph structure has been pre-computed for a motion database, we generate novel

motion sequences at runtime. By searching the graph structure to produce a sequence

of nodes, motion can be synthesized to satisfy user-defined constraints. Because edges

in the graph represent points where two pieces of motion data may be joined, the simplest

synthesis approach just walks through the graph randomly and renders the frame associated

with each node encountered while maintaining the proper transformation for the character
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Figure 3.5: We remove sinks and dead-ends in the graph so that following transitions during

motion synthesis does not restrict areas of the graph we can reach. Computing the largest

strongly connected component (SCC) ensures each node is reachable from every other

node.

and smoothing over discontinuities caused by the transitions.

Following edges in the graph selects pieces of motion to follow each other, and care

must be taken to rotate and position the root properly. Each frame rendered must have the

appropriate 2D rigid transformation applied so that the original motion data is aligned with

the current position and orientation of the character. This corrective transformation begins

as the identity transformation and remains so until an edge is followed that leads to a frame

not sequential in the original data. When these transitions are followed, the transformation

T (f, t), that was used to align the frames for the distance metric calculation, is concatenated

to the corrective transformation.

When a transition is made between two frames, a small jump will likely be visible un-

less the threshold for the distance metric was set very low. We smooth this discontinuity

out over a small time window. The incoming and outgoing motion streams are overlapped

by a small amount (0.25 seconds in most of our examples) and blended with time varying

weights. The blend weights are varied using a sinusoidal “ease in/ease out” function. Dur-

ing blending, root positions are linearly interpolated while the quaternion orientations use

spherical linear interpolation. Blending can introduce artifacts, the most common being the

feet sliding on the ground. Leeet al.[32] eliminate this problem by only allowing transi-

tions to occur when the window over which the blend is performed contains the same foot
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contact state in each blended motion. The artifacts can also be eliminated in a post process

step by strictly enforcing constraints. We leave it to future work to implement a more robust

strategy to eliminate blending artifacts similar to those presented in the referenced works

[16, 28, 34].

For the examples presented in this work, we use simple random graph walks when syn-

thesizing motion under motion graph control. For more sophisticated applications, methods

have been proposed to generate graph walks subject to user-defined constraints. Arikanet

al. [1, 2] propose a solution appropriate for an artist directed animation tool by allowing

users to specify pose and behavior constraints along a time line. Kovar and his colleagues

[27] use an optimization to apply their graphs to the problem of synthesizing motion along

a user specified path. In another work, Kovar [18] proposes automatically organizing the

graph with “hub” nodes containing high connectivity to facilitate interactive control of a

large variety of behaviors. Finally, Leeet al. [32] used clustering to aid in their searching

while providing three interfaces for interactive control, including a performance-based one.

3.2 Physical Simulation of Human Motion

Simulation has been widely applied to generate realistic motion subject to the laws of

physics. Video games, blockbuster movies, and animated films have all used physics to

model the motion of both passive objects and living creatures. For human motion, physical

simulation provides a way to model the interaction between a character and its environment

in ways that cannot be anticipated at the time the motion data was captured or keyframed.

Physical laws of motion subject to gravity and other external forces govern the movement

of limbs that are constrained to move into only physically plausible configurations. This

basic setup provides what is known in the interactive entertainment industry as “ragdoll

physics.” Like a ragdoll, it often looks lifeless, with limbs flopping because of a lack of

control systems to coordinate limb movement and generate natural human behavior. Con-

trollers provide the low-level mechanism to drive the limbs of the virtual character by com-
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Figure 3.6: Each limb is represented in the simulation as a rigid box connected to other

limbs by joint constraints. Joints are labeled to indicate whether they are represented by

a hinge or universal joint (1 or 2 DOF). The root joint is marked with an ’X’ because it

constrains the connection between the lower back and hips not to move.

puting internal joint torques that approximate muscle actuation. This section begins with

an overview of how we represent the human body as a series of rigid links and set up con-

straints to limit its movement to natural configurations. We later provide an introduction on

how the equations of motion are solved by a rigid body simulator as well as how feedback

control systems compute the joint torques used to control the simulation.

Our virtual characters are represented as an articulated figure consisting of a series of

rigid links connected by joints. We use the freely available Open Dynamics Engine (ODE)

to simulate the rigid body dynamics and resolve collisions between the simulated human

and the environment [63]. ODE is supplied box primitives representing each limb, joints

of appropriate type to connect each limb, and constraints that limit the movement of each

joint to realistic ranges. We represent all 16 joints in our simulated model, the same used

by our kinematic model described in Section 3.1.1. Each joint is specified as either a hinge

or universal joint, with one and two degrees of freedom respectively. Figure 3.6 shows the
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Joint Mass Lowx Highx Lowy Highy

lfemur 6.051 -165.0 45.0 120.0 20.0

ltibia 3.541 0 165.0 - -

lfoot 1.111 -11.5 11.5 - -

lowerback 13.409 -45.0 90.0 - -

upperback 10.0 -2.5 5.0 - -

thorax 5.877 0 0 - -

lowerneck 3.0 -50.0 89.0 -60.0 60.0

upperneck 5.877 -45.0 45.0 - -

lhumerus 2.212 -85.0 85.0 -75.0 150.0

lradius 1.563 0 120.0 - -

Table 3.2: A listing of the mass of each body (in kilograms) and joint limit constraints (in

degrees). Two high and low joint limit ranges are given for Universal joints and one for

Hinge, representing each DOF. The values are symmetric left and right.

structure of the simulated body with each joint type indicated.

Joint constraints are used to limit the motion of each joint to the physical limits of

the human body. Lower and upper joint limits are supplied to the simulator as constraints

for each degree of freedom. We derive our joint limits from those used by Faloutsos [9],

originally generated through intuition about the body as well as from the biomechanical

literature. Additionally, masses for each limb are specified using values from Hodginset

al. [22], derived from biomechanical data. Table 3.2.1 contains a listing of the joint limits

for each degree of freedom in addition to the masses used for the rigid bodies attached to

each joint.
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3.2.1 Representation

The initial positions and orientations of each link are specified in a world Cartesian co-

ordinate system. The simulation is initialized using a pose from our motion database to

produce a smooth transition from motion graph control. The kinematic model used by the

motion data, described in Section 3.1.1, uses a reduced coordinate system specified by the

position of the root link with the orientations of links defined relative to their parent link’s

coordinate system. Because the dynamics library has no knowledge of hierarchy between

links, poses in the reduced coordinate system must be converted to the global coordinate

system before being supplied to the simulation. For our control algorithms, it is convenient

to stay in the reduced coordinate system when computing the joint torques used to drive

limbs to desired positions. We have implemented conversion routines to move between the

global and reduced coordinate systems when necessary.

3.2.2 Equations of Motion

The motion of a simulated human’s degrees of freedomq can be represented using a set

of second order differential equations that relate Newton’s law, the accelerations of the

degrees of freedom, and the external/internal forces that act on the system. The external

forces include those generated through collisions with the environment as well as gravity,

while the internal forces are joint torques that approximate muscle actuation, generated by

a control system. The equations of motion have the following general form:

M(q(t))q̈(t) + C(q(t), q̇(t)) =
∑

JT
T Fi +

∑
l

JT
Rτext,l +

∑
k

JT
Rτj,k

whereq(t) is the value of each degree of freedom at a given moment in time,M is a

symmetric, positive definite mass matrix,C is gyroscopic forces,J is the Jacobian matrix,

F is external forces, andτext are internal joint torques (see Faloutsos [9] for more details).

The system listed above may be solved by discretizing howq changes over small time

intervals (known as time steps). A numerical integration method is typically used to solve
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a transformed version of the previous equation into a linear systemM q̈ = b (b is the total

applied force) and solving for̈q. Integrating the computed accelerations twice will give the

positions and velocities of each degree of freedom over the specified time step. Collision

reaction forces must be generated to resolve collisions. An impulse or “penalty” method

is one of the simplest methods used to quickly resolve interpenetration by generating stiff

spring forces at contact points between bodies [38]. We use the iterative solver provided

by ODE to achieve good performance, while sacrificing some accuracy for near-singular

systems.

3.2.3 Controlling Simulation

The basic building blocks for the control system are target poses for the joints, as well

as a method to compute the joint torques that will drive the joints toward these desired

targets. For computing the torques, which are analogous to internal muscle actuation, we

implement the commonly used proportional-derivative controller (PD-controller). One op-

tion for specifying target poses is to use sparse artist-directed poses separated by time or

event-based transitions. Known as a pose controller, these target poses guide the simula-

tion to key poses of a behavior, such as the layout or tuck positions of a diving motion [71].

A continuous controller generates target poses automatically from the current state of the

system (positions and velocities of limbs). The target points for each joint are then con-

tinuously varying rather than changing in step increments, as with a pose controller. This

feedback loop allows continuous controllers to be more robust to disturbances or changes

in initial conditions than pose controllers, but requires an understanding of the behavior

rather than tuning of key poses. For example, a continuous falling controller might look

at how the shoulder and hip velocity evolve during the simulation and constantly adjust

the target position of the arms to break the fall. A pose controller, by comparison, might

look at the falling direction to determine which protective posture to target from among a

small library of choices. Our falling controller, discussed in Chapter 5, uses a continuous
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controller because it provides more adaptive behavior than a pose controller.

While using a controller may sound very similar to keyframing, there are some major

distinctions. First, the inputs to the controller aredesired joint angles, notactual joint

angles. The controller will compute torques to drive the joint towards the desired value,

but the joint is still subject to external forces such as those created by the environment and

other limbs. Therefore, the joints may not reach the desired values. For example, an arm

might be pinned to the ground under the body’s weight, causing the joint controller to fail

to generate enough force to move into the desired position. Second, if using continuous

controllers, the desired pose does not come from a static keyframe or motion captured

posture. The controller instead algorithmically specifies the target postures as a function of

the system’s feedback sensors. Finally, the character’s global position and orientation is not

directly specified by the controller, rather it evolves from interactions with the environment.

The character will always fall under gravity, for example.

Computing Joint Torques Using Proportional-Derivative Controllers

We use PD servos to approximate the internal muscle actuation of the body, producing

trajectories that move limbs from their current configurations towards desired ones. The

inputs to the controller are the desired joint anglesqdes, the state of the systemx = [qq̇],

and various sensor data such as the contact state of the hands. The output of the controller

is the internal muscle torques applied to each joint, driving it towards the desired value.

This is the classic setup for a closed-loop system – closed because it requires feedback of

the system’s state (see Dorf [8] for more on control systems). Figure 3.7 is a graphical

representation of this basic controller feedback loop.

The PD controller computes internal rotational spring forces for each degree of freedom

with the following equation:

τ = ks(θdes − θ) + kd(−θ̇)

whereks andkd are stiffness and damping gains respectively,θ is the current joint angle,
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Figure 3.7: The basic closed-loop feedback system utilized by our PD controllers.

θdes is the desired joint angle, anḋθ is the velocity of the degree of freedom.

Tuning the stiffness and damping gains is critical to achieving natural looking move-

ment. The stiffness gain controls the strength of the spring while the damper gain adjusts

how smoothly the joint arrives at the desired value. If the system is under-damped, an oscil-

lating response will occur as the joint overshoots the desired value, while over-damping will

give an overly slow progression towards the desired value. Critical damping is achieved

when the stiffness and damping gains are tuned such that the joint arrives at the desired

value as quick as possible, with little or no overshoot. We hand tune the gains, as is tradi-

tionally done, and this process can be somewhat time consuming. An alternative approach

is to use a heuristic to scale the gains based on the moment of inertia of the chain of bodies

connected to each joint [73].

3.2.4 Example: Falling

We now compare results illustrating the difference between ordinary ragdoll physics, which

only models the passive motion of the body, and simulation augmented with PD-controller

driven behavior. Figure 3.8 shows a side-by-side comparison of a controller-based falling

behavior with ragdoll simulation. The fall controller, covered in detail in Chapter 5, gener-

ates a more realistic behavior by using the arms to protect the the head during impact.
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Figure 3.8: A side-by-side comparison of ragdoll physics and a controller-based simulated

behavior. The PD-controller driven behavior appears more realistic by breaking the impact

with the arms, while the ragdoll’s lifeless movements cause a landing directly on the head.
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Chapter 4

Building a Correspondence Between the

Motion Database and the Simulation

Our hybrid system allows transitions between simulated motion and motion data, as well

as the reverse. These transfers allow the best motion synthesis technique for a particular

situation to be selected. When considering how to perform these transitions, its important

to understand the state space of representable poses for each method. During data-driven

control, the motion graph may change the pose of the character to any discrete posture in

a motion database. The simulation, on the other hand, has a much larger state space that

includes the continuous space of physically plausible configurations allowable by the joint

limit constraints, including unnatural ones unlikely to be present in a motion database. In

order to transition between the techniques in real-time, we need a fast method to create a

correspondence between postures generated by the simulation and those contained in the

motion database. Transitioning to the simulation from the motion graph simply involves

setting the initial conditions of the simulation based on the pose and velocity characteristics

of the motion data. Transitioning from simulation to motion data is harder, because the

larger state space of the simulation makes it unlikely to be exactly in a pose present in

the motion database. Our strategy is to quickly find a pose in the motion database that is
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sufficiently close to the simulated posture and drive the simulation towards this pose.

This chapter defines a correspondence between simulated postures and those found in a

motion database. We first describe a fast search algorithm, based on Approximate Nearest

Neighbor search, to find closely matching poses in the motion database to a simulated

posture. Part of the correspondence process is realizingwheneach technique is appropriate

andhow transitions between the techniques are carried out, thus we conclude the chapter

with a discussion of these topics.

4.1 Nearest Neighbor Search

Our problem consists of finding frames in our motion database that are similar to a query

posture generated by the simulation. More specifically, we want to find then closest match-

ing frames to our input posture and make a selection based on the most situationally appro-

priate result. Comparing the query posture to every frame in the database in a brute force

manner would be prohibitively expensive. Thus, we need a fast search strategy that exploits

features in our data to speed up the selection process. Nearest neighbor search is a class of

algorithms designed to solve such problems.

The basic k-nearest neighbor (KNN) search problem takes as input ad-dimensional

set of dataD of sizen. D is preprocessed into a data structure so that given any query

point q, thek most similar points inD can be reported efficiently. Minkowski similarity

functions are typically used for the distance metric, such as the Euclidean Distance metric

that we use. Our data is high dimensional, so performance considerations are important

if we expect to get real-time performance. Spatial data structures [56] speed up query

times by exploiting spatial relationships in the data. Still, most algorithms tend to suffer an

exponential decrease in performance as the dimensionality of the input data increases.
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Figure 4.1: A visualization of sample data inside thebbd-treeused by the ANN search.

The image becomes fuzzier as the distance to a query point increases, representing ANN’s

randomized nature.

4.1.1 Approximate Nearest Neighbor Search

We base our search strategy on the approximate nearest neighbor (ANN) algorithm devel-

oped by Mountet al. [41]. By using a randomized search strategy and relaxing constraints

on search accuracy, the ANN algorithm does considerably better than standard KNN al-

gorithms in both space and time performance for high dimensional data. ANN search

introduces anε parameter that guarantees any nearest neighbor result is within a factor of

(1 + ε) distance of the actual nearest neighbor. This relaxed specification gives a tangi-

ble guarantee on accuracy while providingO(log3n) expected run time and anO(nlogn)

space requirement. The algorithm first finds the cell the query point is located in its spa-

tial data structure of the input data points. A randomized search then finds surrounding

cells that contain input data points within the givenε threshold distance from actual nearest

neighbors.

We selected the balanced box-decomposition tree (bbd-tree) data structure [3] to speed

up the initial spatial query made by the ANN search algorithm to locate the leaf cell con-

taining the query point. Thebbd-treeis able to fit input data more accurately thankd-trees
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[13] by allowing special shrink nodes in its tree representation. A spatially tight cluster of

input points may be immediately bounded in one step in the tree by substituting the tradi-

tional axis-aligned hyper-rectangles used bykd-treeswith these shrink nodes, essentially a

hyper-rectangle within a hyper-rectangle. Figure 4.1 contains a representation of a sample

2D data set loaded into abbd-treeused by the ANN search. The implementation of our

search algorithm utilizes the freely available ANN C++ library [42].

Data Representation

Nearest neighbor search algorithms require that each input data point be a parameter vector

of fixed dimensiond. We must ensure that visually close human postures produce parameter

vectors that evaluate to smaller values using the Euclidean distance metric. Our strategy is

to ignore the root translation and align each posture along a coordinate axis so that relative

orientation does not affect the comparison of two similar poses. After alignment, 3D joint

positions are extracted for each posture. Each parameter vector hasd=86 so that the 3D

position of each aligned joint is represented. We also support including surrounding frames

in the motion data as a way of encoding velocity. Because our examples utilize the search

process during low velocity, prone body positions, the velocity encoding did not increase

the search accuracy sufficiently to warrant the increase in dimensionality.

Performance

We now present a performance comparison of our implementation of the ANN search al-

gorithm to a brute force method. We tested both algorithms on a series of queries and

measured their runtime with respect to motion database size. We created a sample mo-

tion database of13, 183 frames (about440 seconds) containing several behaviors includ-

ing walking, running, idling, sneaking, and jumping. Each trial used a subset of the full

database and measured the average runtime over150 searches using query points randomly

selected from the database. Figure 4.2 shows the performance results for both algorithms as
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Figure 4.2: Performance comparison of ANN and brute force search. Each trial recorded

the average query time over 150 random queries for increasingly large sample motion

databases.

the database sample size increases. The results suggest that ANN is effective, in practice,

in speeding up query times over brute force.

4.2 Transitioning Between Motion Graph and Simulation

In a hybrid system like ours that utilizes both simulation and motion data for synthesis,

it is important to determine when a particular synthesis technique is appropriate because

neither approach alone provides a solution in all situations. We must carefully determine

which technique is best suited to the current situation based on whether we can simulate

the requested behavior or how well it is represented in the motion database. The following

sections outline under what conditions each technique is triggered within our system and

how the transitions are carried out.
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4.2.1 Motion Graph to Simulation

As explained in Chapter 3, we use motion graphs to provide high-level control of our vir-

tual character, capable of utilizing large motion capture databases and generating smooth

transitions between various behaviors. Characters under motion graph control can perform

a variety of behaviors such as running, walking, sneaking, and jumping. Unfortunately, it

is difficult, even with very large motion databases, to plan for interactions with an arbitrary

environment and external forces. We do not want body parts intersecting objects in the

environment and would like the character to respond realistically when external forces are

applied by things such as dynamic obstacles, wind, gravity, and even other characters.

The simulated behaviors we implement deal with dramatic loss of balance that would be

extremely difficult to model with motion data both because of the difficulty of matching the

environmental conditions and the danger to the motion capture actor. Therefore, external

forces of significant magnitude applied anywhere on a virtual character are used to trigger

a transition to simulation. In realistic training environments, significant collisions with

hazards and obstacles in the environment (either static or dynamic) could trigger a transition

to simulation. For maximum flexibility in testing, we devised a user interface that allows

the selection of any body part as well as specification of an arbitrary force vector. Figure

4.3 shows how a simulation is triggered from a motion graph controlled character using our

interactive user interface. The transition to simulation is carried out by simply setting the

initial positions and velocities of each simulated limb to those extracted from the motion

data so that the transition is seamless.

4.2.2 Simulation to Motion Graph

During simulation, when a behavior is required that cannot be simulated, a transition must

be made back to motion graph control. Because we simulate dramatic loss of balance, we

usually (seeChapter 5) activate motion graphs to allow the character to stand up naturally
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Figure 4.3: Triggering transition to simulation from idling behavior. From left to right:

Selection of a body part, specification of force vector to apply, and beginning of simulated

fall.

after a fall. In most cases, the simulation will have significantly changed the posture of the

character during the time that is was active. Thus the simulation is not likely to be in a pose

close to any frame in the motion database. When the arms impact the ground, the ANN

search is used to find the closest frame in the database to the simulated posture and a special

controller is used to allow the simulation to naturally settle near this frame. Using an arm

contact event to trigger the search process provides a balance between allowing a natural

falling behavior and providing time for settling near motion data before the body comes to

rest. The details of this controller are covered inChapter 5. When the settle controller has

moved the character sufficiently close to the pose found in the search, a transition to motion

graph is performed using the same blending scheme used to carry out the motion graph

transitions described in Section 3.1.4. Although it would have been possible to achieve this

with only blending, the settle controller is preferred because it still allows the character

to remain subject to physical constraints, respond to the external environment, and avoid

some types of blending artifacts such as object interpenetration and foot sliding.
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Chapter 5

Simulating Human Behavior

Controllers provide a means to infuse life into a simulation by driving the limbs towards

target locations determined by a high level behavioral module. If this module is well de-

signed, it will create behaviors that mimic how a person would move his or her limbs in

a similar situation. The most general version of this problem would require a deep un-

derstanding of how people coordinate their limbs while moving. We simplify the problem

greatly by looking at manageable behaviors that might not require our controllers to directly

specify every degree of freedom of the body. In particular, we generate reflexive responses

to falling that use the natural dynamics of the system to control some of the degrees of

freedom, and because we do not expect the simulation to return to a balanced posture, the

control problem is simplified. The hybrid system allows the difficult control problem of

returning to a balanced standing posture from a prone or supine position to be handled by

our data-driven synthesis approach.

The controllers in our system are used for two purposes:

1. Biomechanically inspired falling reactions designed to realistically protect the body

under a wide variety of plausible physical interactions.

2. Ensure that the simulated behavior settles into a configuration near existing motion

data to allow character control to return to a motion capture graph.
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Figure 5.1: High-level states of our system. Solid black arrows indicate the transition event

used to move between each high-level state. The fall and settle controllers are governed by

their own finite state machines.

Physical controllers compute the internal muscle torques the virtual character must exert

at each joint to perform a given motor task in a natural way. The torques are computed

by proportional-derivative controllers (PD-controllers) that were introduced in Chapter 3.

The controllers provide the low-level control used to drive the body towards target postures

determined by a higher level mechanism. This chapter focuses on how these target postures

are generated in our system to simulate natural human behaviors.

Finite state machines are a common representation for managing transitions between

individual motor control states [10, 22, 30]. Each state produces a set of desired joint angles

for each degree of freedom of the virtual human. The desired poses may be computed

procedurally using biomechanical knowledge and the current state of the simulation as well

as with poses from a motion capture database. Transitions between control states may be

time or event based. Figure 5.1 illustrates the high-level state machine used in our system

to generate transitions from motion graphs to the falling controller and back to motion

graphs. Details of the controller states, target pose computations, and transition conditions
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are covered in the following sections.

5.1 Design of Falling Controllers

This section describes the controller that generates motor control strategies for a falling hu-

man. The goal of this controller is to produce biomechanically inspired, protective behav-

iors in response to the many different ways a human may fall to the ground. The following

sections address biomechanical considerations, continuous generation of target postures,

and determination of control state.

5.1.1 Biomechanics of Falling

The human body displays a remarkable ability to quickly respond to unexpected impacts

and prevent injury. The initial conditions for falls are varied, yet humans still instinctually

generate motor control strategies that protect the body in many situations. Researchers

in the biomechanics community have looked at unexpected and trained responses to slips

induced by various perturbations. Robinovichet al. [51] remarks that even though the total

energy available in a typical fall far exceeds that required to fracture a hip or wrist, most

falls do not result in injury. This fact suggests highly effective motor strategies to protect

the body during a fall. For example, people often take corrective steps or attempt to use

nearby objects as hand holds when attempting to recover balance [7, 36, 37]. Cham and

Redfern [6] found that the ankles play a much smaller role than the knees in these corrective

strategies. They also found reaction times for the lower body to start at around 190 to 350

milliseconds after impact. Makiet al. [37] argue that falling is highly dependant on rapid

movement of limbs to alter the base of support, with arms being the most rapid to react. He

then shows how strategies are further complicated by the current ongoing activity. Maki

[36] also quantifies the biomechanical limits on the body’s ability to recover balance from

an impact through the concept of a velocity stability margin. Finally, this work also finds
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that an overly quick response to an impact can lower the person’s ability to control his/her

stability.

While the biomechanics literature provides many insights into the motor control strate-

gies used by humans, translating the research into robust control strategies for virtual char-

acters is difficult. Our understanding of what happens at the later points of falls is limited

because experiments must ensure subject safety and therefore limiting harnesses are often

used. Collecting natural responses to unexpected slips in a laboratory setting is difficult

because the subject will be expecting a slip or a trip after the first trial.

The following biomechanics inspired rules motivated the implementation of our control

strategies:

1. Falls are not always broken with both wrists [51].

2. The upper body tends to impact before the pelvis [51].

3. Upper body and pelvis kinetic energy are actively reduced at impact [51].

4. Corrective responses start occurring after 200 milliseconds on average, with arms

being slightly faster [6, 37].

5.1.2 Continuous Control of Falling Behavior

Modeling the way people fall is a difficult task not only because the experimental data is

limited, but also because people may vary greatly in their physique and prior training. Our

controllers aim to model an average healthy adult’s involuntary reaction to arbitrary impacts

that cause a full loss of balance. The aim of this work is not to respond to small impacts

that could be resolved with a corrective step or other reactive responses (see Zordan [73]).

We look at impacts that create a loss of balance that requires protective behaviors to avoid

injury.

Falls are very dynamic, thus we use continuous pose control that is coupled to the
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Figure 5.2: The fall controller in a variety of situations producing forwards, backwards,

and sideways falls.

simulation. The predicted landing point of the shoulders is derived from shoulder velocity

and used to generate a continuous stream of protective target postures. Depending on the

fall direction, we determine the current controller state which causes one or both arms to

actively track the corresponding predicted shoulder landing position. Figure 5.2 shows

the fall controller responding to a variety of initial conditions. We now describe how the

controller state is determined and specifics of the target posture generation.

Determining Controller State

Once the fall controller is activated, it may be in one of four states: Forward, Back-

ward, Left, or Right. These correspond to the computed falling direction of the charac-

ter. Velocity-based transitions may be made continuously between these four states as the
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Figure 5.3: Example falls showing predicted landing positions of shoulders as red spheres.

Used to determine current controller state, the blue vector indicates average limb velocity

and the green vector indicates current facing direction. Controller gains and initial the

distance from the target dictate the speed with which the arms will align with the predicted

landing locations.

character’s falling direction changes, providing a more dynamic response as the simulation

evolves. The controller is divided into four states because the required response will dif-

fer depending on fall direction. The fall direction is computed using a dot product of the

current facing direction of the human and the average velocity of the limbs:

fallState(~θd, ~Vbody) =



Forward if ~θd · ~Vbody ≥ .5

Backward if ~θd · ~Vbody ≤ −.5

Right if 0 < ~θd · ~Vbody < .5

Left if −.5 < ~θd · ~Vbody < 0

where~θd is the facing direction of the character and~Vbody is the average velocity of the

body.
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Figure 5.4: A 2D illustration of how the target joint angles of the shoulder are determined

during a fall. The predicted shoulder landing position,~Pland, is determined by intersecting

the vector~Sdir, which is parallel to~Vbody, with the ground.θs indicates the relative joint

angle of the shoulder necessary to align the arm with~Sdir.

Protective Maneuvers

During each of the fall controller’s four states, one or both arms track the predicted landing

point of the shoulders. The predicted landing positions of each shoulder are computed by

intersecting the geometry of the environment with a ray from the shoulder pointing in the

direction of ~Vbody. Figure 5.3 shows the predicted shoulder landing positions for various

falls. Depending on the state of the fall controller, each arm will track the predicted landing

location of the shoulder. For falling backwards and forwards, both the left and right arms

are actively controlled to track the shoulder landing position. For falling sideways, only the

arm in the direction of the fall tracks the landing position.

The goal of each actively controlled arm is to have the wrists intersect the line between

the shoulder and its predicted landing position. Desired angles for the shoulder joint are
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Joint ks kd Joint ks kd

root (0.0, 0.0) (0.0, 0.0) thorax (31.5, 0.0) (10.5, 0.0)

lfemur (90.0, 90.0) (22.5, 22.5)lowerneck (31.5, 0.0) (10.5, 0.0)

ltibia (15.0, 0.0) (3.0, 0.0) upperneck (26.25, 0.0) (4.2, 0.0)

lfoot (4.5, 0.0) (1.5, 0.0) lhumerus (360.0, 360.0) (108.0, 108.0)

lowerback (120.0, 0.0) (45.0, 0.0) lradius (90.0, 0.0) (24.0, 0.0)

upperback (42.0, 0.0) (15.75, 0.0)

Table 5.1: Spring (ks) and damper (kd) gains used for each state in our falling controller.

When falling sideways, gains are lowered for the shoulder joints that are not tracking the

predicted landing position. The gains are symmetric left and right.

computed as illustrated in Figure 5.4. A small natural bend is added to the elbow and the

desired angles for the rest of the body are set to initial angles at the time the fall controller

is activated. Lower gains are used for the rest of the body to keep it from appearing too

stiff. Table 5.1 contains the spring and damper constants used by the PD-controller during

a fall.

5.2 Controlling Towards Motion Data

The posture of the simulated character after a fall cannot be easily predicted because in-

teractions with the environment and external forces will be different for every fall. For

example, arms may be pinned by the body to the ground and body parts can come to rest

against objects in the environment. If we want to return character control to pre-recorded

motion data, we need to ensure the simulation settles into a configuration close to one in

the motion database.

The goal of allowing the simulation the freedom to naturally reproduce a behavior con-

flicts with the need to have the character settle into a pose near existing motion data. Be-
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cause of the difficulty of recording data where all the markers are not visible, we may only

have a few clips in the database of the character standing up from a prone or supine posi-

tion. If the controller waits too long to try to settle near one of these clips, an arm might

be pinned to the ground underneath the body, preventing the simulation from matching the

prerecorded poses. Moving towards motion data early in the fall would eliminate the pro-

tective movements necessary to naturally break the impact of the fall. The goal of the settle

controller is to reasonably resolve this conflict by driving the character to similar motion

clips at an appropriate time. We activate the settle controller when the hands first make

contact with the environment as a result of the fall controller. The following section will

describe the individual controller states of the settle controller.

5.2.1 Settle Controller States

Beginning at the moment the hands impact the ground, the controller moves the limbs of

the body toward a frame in the motion database while maintaining visual continuity with

the exiting fall behavior. The settle controller has two states:

1. Absorb Impact: Gains are adjusted for the body to naturally absorb the impact with

the ground thus reducing the velocity of the hips and upper body. This state also

avoids an abrupt movement towards an arbitrary (but hopefully close) pose from the

motion database. A time-based transition is made (currently a half second) to the

ANN Search state.

2. ANN Search: An ANN search (see Chapter 4 for details) is executed to quickly find

a frame in the motion database that is close to the current simulated posture. This

frame is then used as the target joint angles while continuing to absorb the impact of

the fall.

Table 5.2.1 shows the spring and damper constants used for each state in the settle

controller. When the pose of the simulated human is within a threshold distance to the target
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Joint Absorb Impact ANN Search

ks kd ks kd

lfemur (72.0, 72.0) (18.0, 18.0) (270.0, 270.0) (67.5, 67.5)

ltibia (12.0, 0.0) (2.4, 0.0) (45.0, 0.0) (9.0, 0.0)

lfoot (3.6, 0.0) (1.2, 0.0) (13.5, 0.0) (4.5, 0.0)

lowerback (96.0, 0.0) (36.0, 0.0) (360.0, 0.0) (135.0, 0.0)

upperback (102.0, 0.0) (38.25, 0.0) (180.0, 0.0) (67.5, 0.0)

thorax (76.5, 0.0) (25.5, 0.0) (135.0, 0.0) (45.0, 0.0)

lowerneck (76.5, 0.0) (25.5, 0.0) (135.0, 0.0) (45.0, 0.0)

upperneck (63.75, 0.0) (10.2, 0.0) (112.5, 0.0) (18.0, 0.0)

lhumerus (108.0, 108.0) (32.39, 32.39)(120.0, 120.0) (32.3, 32.3)

lradius (63.0, 0.0) (14.4, 0.0) (90.0, 0.0) (21.59, 0.0)

Table 5.2: Spring (ks) and damper (kd) gains used for each of the two states of the settle

controller. The gains are symmetric left and right.

posture determined by the ANN search, a transition is made to motion graph character

control. The motion generated by the simulation is smoothly blended into the motion data

using the interpolation scheme covered in Section 3.1.4. Character control then continues

using the motion graph until the fall controller is triggered again.

5.3 Example: Rolling Behavior

The fall controller represents one kind of behavior that is more appropriate to use simulation

for than motion data. However, with a future goal of fully autonomous simulated characters,

it is important to understand how extra behaviors could be used to adapt to new situations. A

high-level planner may determine that it is urgent that the character regain balance quickly

after falling, and thus a rolling behavior might allow the character to get back on his feet
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Figure 5.5: A sequence of images showing the fall controller transitioning into a simulated

rolling behavior. The initial force vector is indicated in blue, and the larger this force is, the

more likely a roll is to occur. The character is colored based on the current controller state

(see Figure 6.3 for the color/state mapping).

faster.

As an example of this sort of approach, we implemented a simple rolling behavior that

is activated based on the momentum of the human when impacting the ground. Our current

system activates a rolling state only when falling backwards and uses a strategy that kicks

both legs up in an attempt to generate a backwards roll. Figure 5.5 shows a fall sequence

that turns into a roll. While this example is simple, it illustrates how future hybrid systems

may easily add more sophisticated behavior.
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Chapter 6

Assessment

This chapter discusses the capabilities of our hybrid system. We set up a number of ex-

periments to assess the robustness of the system under a variety of initial conditions. We

first apply a controlled set of input forces to the character to examine the performance and

adaptive nature of the fall controller. We then apply the same set of inputs to a motion

graph controlled character to assess the quality of the hybrid system performing a transi-

tion to the simulated fall controller and a return to motion graph control. This assessment

shows that the system is capable of producing appropriate transitions between data-driven

and dynamics-based motion synthesis and that the simulated behaviors appear natural for

the tested situations.

6.1 Results

For each result sequence shown in the following sections, a controlled set of initial condi-

tions are supplied by the user. The user can apply a force to a selected body part in one of 48

different directions. These forces are shown in Figure 6.1 for the pelvis. The 48 directions

were chosen as a reasonable sampling of the external forces the character may encounter.

The strength of the force is also a user-defined parameter. We used forces applied to the
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Figure 6.1: A visualization of the 48 experimental force vectors available to the user to test

the adaptiveness of our hybrid system.

selected body part for a single time step that varied between 2500-7000N. Each sequence,

including both the simulation and rendering, was generated at approximately 50 frames per

second on a 2.4Ghz Pentium 4. The following sections examine the results of applying

these experimental forces to the character to test our fall controller and the overall hybrid

architecture.

6.1.1 Fall Controller

Our fall controller, described in Chapter 5, uses physical simulation to generate biomechan-

ically inspired protective falling behaviors. We now assess the controller’s ability to gen-

erate human-like behavior that naturally adapts to different initial conditions. We activated

the controller from a variety of initial body poses (supplied by frames from our motion

database) while applying an initial force. The experimental force vectors were applied with

varying strengths to the pelvis, head, shoulders, and legs. Most of the experiments assessed

the performance of the controller on flat terrain. However, the system also produced natural

results when the character interacted with more complicated environments. The controller

generates a protective behavior by projecting the shoulder velocity onto the environment’s

geometry and controlling the arms accordingly. This control scheme is robust to differ-
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ent terrain geometries as the estimated shoulder landing positions is still as accurate under

these conditions as it is for the flat ground plane case. However, the shoulder velocities

are not filtered, causing the predicted landing locations to exhibit less temporal coherence

than desired. In addition to filtering the velocities, accounting for a more ballistic shoulder

trajectory may have also increased the accuracy of the landing estimates. Figure 6.2 con-

tains four sequences of falls generated using a variety of initial conditions. The bottom row

illustrates a more complex environment.

The falling controller generates reasonable behavior for the inputs in our experiments.

Our controller generates responses only when a complete loss of balance occurs in the

character, but does not account for simple balancing reactions that could prevent a fall.

It also does not consider the variety of instinctual responses people often exhibit in the

presence of hand holds in the surrounding environment. Chapter 7 contains a discussion of

enhancements to the fall controller that would increase its robustness.

6.1.2 Hybrid Control

This section presents the results of our experiments with our hybrid system. Each experi-

ment demonstrates a contextually appropriate and visually smooth transition from a motion

graph controlled behavior to a physically simulated behavior, and back to the motion graph.

The user may apply a force vector to a character that is kinematically driven by a motion

graph, triggering the dynamics-based fall controller. As described in Chapter 5, the fall

controller leaves the character in a prone or supine position on the ground. The settle con-

troller is activated on impact, and generally causes the character to settle near an existing

clip of motion data. This process relies on the ANN algorithm, described in Chapter 4, to

build a correspondence between the simulation and motion database so that motion graph

control can resume without creating noticeable glitches in the motion. A small set of mo-

tion clips are included in the database to bring the character from a prone or supine position

to an upright, balanced posture. Returning to the balanced posture, a particularly hard be-
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Figure 6.2: Four sequences of results illustrating the behavior generated by the fall con-

troller using different initial conditions. An initial force is applied to the pelvis, indicated

by the yellow vector in the first frame of each sequence (the red vectors indicate the other

choices available to the user). The first three sequences occur in an open space while the

last sequence shows a more complex interaction with an object in the environment.
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havior to simulate, is handled by the hybrid system by relying on these clips to accurately

reproduce the behavior. Because the clips that achieve this behavior are part of a motion

graph, transitions are automatically present that allow other behaviors to continue.

Our first example uses a relatively small database containing 2,867 frames of motion

(about 95 seconds) containing various idling motions as well as 5 clips of motion that

move the character from prone and supine positions to an idle stance. The database is pre-

processed into a motion graph, as described in Chapter 3, to automatically connect the clips

with natural transitions. At runtime, we randomly traverse the motion graph to generate a

seamless, infinite sequence of idle motion until the user applies a force to the character, ac-

tivating the fall controller, and eventually, the settle controller. The settle controller should

cause the character pose to match a pose from one of the five clips of motion that can re-

turn the character to a balanced posture. Control is then transferred to the motion graph,

bringing the character to an upright posture and allowing a natural transition back to the

original idling behavior. Figure 6.3 contains a sequence of images where the character is

color-coded to indicate the current state of the system (motion graph, fall, settle). We also

conducted a similar experiment using a sneaking behavior for the motion graph control,

with a database of 1,362 frames (about 45 seconds). Figure 6.4 presents a sequence where

a force is applied to the pelvis and causes a forward fall followed by a recovery to the

original sneaking behavior.

The hybrid system successfully generates natural transitions between data-driven and

dynamics-based motion synthesis for a wide variety of user-specified input parameters.

However, the system’s flexibility is limited by the availability of motions that reasonably

connect plausible simulated postures to the motion database. Those sequences are particu-

larly difficult to capture because of the number of markers that are occluded when an actor

is lying down or bent over and it is challenging to cover the space of all possible outcomes

of the simulation. Except in situations where the body parts are pinned between the body

and the ground plane or other objects in the environment, the settle controller ensures the

simulation will move the body pose near existing motion data. There are no guarantees
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Figure 6.3: A sequence demonstrating hybrid control of a virtual character. An idle behav-

ior is driven by the motion graph, followed by a transition to a simulated fall caused by the

user-supplied force (indicated by the yellow vector in the first frame). The settle controller

achieves a body pose near motion data that allows the character to return to a balanced

posture. The key on the right indicates the meaning of the character’s color.
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Figure 6.4: Hybrid control of the character allowing a transition from a sneaking behavior

to a simulated fall, followed by a recovery to the original sneaking behavior. The color of

the character is as in Figure 6.3.
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on how far away the closest motion data may be from the simulated pose at the time a

transition is requested. For example, interactions with the environment may cause the fall

controller to leave the character upright, but leaning against an obstacle, rather than the

expected prone or supine position. The closest pose in the motion database might then be

sufficiently distant that the movement generated by the settle controller, while still physi-

cally correct, could appear unnatural. For these cases, it might be best to augment the settle

controller with a corrective balancing reaction to reach nearby motion data. A planning

algorithm may also be required to reason more intelligently about how and when the sim-

ulation should return to motion graph control (see Chapter 7 for more discussion on this

topic).

6.2 Discussion

Our successful application of a hybrid motion synthesis system is a step towards the devel-

opment of autonomous virtual characters. Researchers can employ a bottom-up approach

by augmenting the behavioral capabilities of each synthesis method incrementally. Our

assessment indicates that data-driven and dynamics-based synthesis techniques have com-

plementary qualities within a hybrid system, greatly extending the capabilities of either

technique alone.
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Chapter 7

Conclusion

7.1 Summary

The progress of developing fully autonomous virtual characters has been hindered by the

lack of a single technique that can accurately capture all the behaviors and reactions such

a character would need to perform. Until further advances are made by researchers in

artificial intelligence, robotics, animation, and biomechanics, a hybrid system is a viable

option, offering the best qualities of each motion synthesis technique and handling a wider

range of situations. This thesis has explored constructing such a hybrid system, combining

data-driven control with motion graphs and physically simulated control with proportional-

derivative controllers. Our system attempts to determine when each technique is most

appropriate and provide the facilities to transition between them as the character’s goals and

interaction with the environment evolve. We utilize a fast approximate search technique

based on nearest neighbor searching to build a correspondence between existing motion

data and poses generated by the simulation. We use the results of this search to guide the

simulated behaviors into poses close to existing motion data, allowing a smooth transition

to a data-driven technique. To our knowledge, this approach is a novel use of physical

controllers, avoiding many common blending artifacts by moving towards motion data in a
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physically realistic way.

A database of motion capture data containing several behaviors and their natural tran-

sitions are preprocessed into a motion graph and used to drive the character during data-

driven control. For physically simulated control, we attempt to capture the natural reactive

behavior of humans in a biomechanically inspired way. We contribute a falling controller

capable of generating protective behavior for a wide variety of situations when external

forces cause the character to lose balance. The physical controllers use finite state ma-

chines to manage the logical states of the falling behavior, using facing direction and body

velocity to determine how and when the arms should protect the body to avoid injury. Ex-

tensions to the basic controller allow for extra behaviors, such as a simulated roll, when a

quicker recovery is necessary.

7.2 Future Work

A number of areas for future work might extend the capabilities of our current system. In

this section, we will first discuss how we might improve the current fall controller imple-

mentation by representing a larger set of reactive behaviors. Integrating additional synthesis

techniques into the hybrid system, and perhaps applying them simultaneously to a single

character, is another area with great potential for future work. Finally, AI planning tech-

niques might help us choose the best synthesis method given the goals of the character and

the current surroundings.

7.2.1 Improving the Fall Controller

While our fall controller generates protective behavior in a biomechanically inspired way,

we assumed that any significant external forces would always generate a full loss of bal-

ance. We made no attempt to use the ankle or hip strategies commonly used by humans

to maintain balance under small perturbations. Real humans often take corrective steps or
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use nearby objects in the environment as hand holds in a surprisingly sophisticated way.

Adding these fall prevention strategies to our controller would allow it to adapt to a much

broader range of situations where the human is able to maintain balance through reflexive

responses.

7.2.2 Extending Use of Synthesis Techniques

We chose to investigate two popular and effective techniques for synthesizing human mo-

tion to integrate into our hybrid architecture. Adding additional techniques to the current

two would increase the system’s flexibility in adapting to the current goals of the virtual

character. Creating parameterized motions by interpolating between a set of example mo-

tions [44, 52] has great potential as an additional data-driven synthesis technique. Recent

work [25, 26] in this area has lead to more automatic methods of aligning example mo-

tions as well as identifying logically related clips, making creation of parameterized mo-

tions more manageable. For example, a continuous space of jumps parameterized on jump

distance and height could be used to allow a character to jump chasms of varying sizes

to grab onto a ledge, where simulation could handle the motion resulting from the impact

with the ledge. In addition, better inverse kinematics (IK) techniques have recently been

explored [19] that attempt to capture more natural behavior-specific movement. IK affords

control at a level that can be difficult to emulate using traditional data-driven techniques,

in situations such as picking out a specific book from an arbitrary place on a book shelf.

If new techniques can generate movements in a natural and convincing way, IK could be a

viable addition to the available synthesis techniques of our system. We believe integrating

these synthesis techniques would greatly extend the usefulness of a hybrid architecture.

The main research challenge in adding more synthesis techniques is to select the best

technique given the state and goals of the character. Specialized planners could be de-

veloped to optimize the choice of techniques based on knowledge of environmental con-

straints, high-level goals, and an encoding of how each synthesis technique interacts with
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this knowledge. Our current system is limited to simple heuristics to determine which

synthesis technique to use, such as the straightforward triggering of simulation when sig-

nificant forces are applied to the character. Transition feasibility between each technique

could be assessed using a more general version of a supervisor controller [9], determining

how the state spaces of each technique overlap. Understanding more complex situations as

well as having a toolbox of techniques to use would contribute greatly towards creating a

truly autonomous character.

Another interesting avenue for future work is to explore how multiple synthesis tech-

niques might simultaneously act on a single character. Not all simulated controllers need

to control every degree of freedom of the character. For example, walking motion might

be generated from a motion graph while the direction of gaze might be generated procedu-

rally based on a model of what in the environment would be likely to attract the character’s

attention. To ensure that the motions generated by combining synthesis techniques appear

realistic, we would need an understanding of perceptual metrics and an ability to measure

whether a motion is visually acceptable or not. Complementary to these metrics would be

the ability to learn which degrees of freedom are important for a particular behavior. For

instance, such a technique might automatically identify from example motion data that the

arms are important to a waving motion and the legs are important to a kicking motion. Such

information could be used to combine simpler, body localized behaviors, providing a high-

level planning system with more flexibility when synthesizing the motion for an arbitrary

situation.

7.3 Towards Total Simulated Autonomy

This thesis represents a step towards creating fully autonomous virtual characters. These

characters should be capable of learning and executing any behavior a human may exhibit

in response to the surrounding environment. Achieving this goal would require controllers

for simulating as many behaviors as possible. As these control techniques are developed,
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we may be able to rely less on motion data or other techniques to animate the subtle nu-

ances of many behaviors. While this does not imply that human motion would not be used

to derive control knowledge, it means a simulated autonomous character would never play

back motion in a strictly kinematic sense. However, an architecture like ours lends itself

to the gradual development of more simulated behaviors as it allows the use of motion

data in situations that are difficult to simulate. In the future, an interdisciplinary collabo-

ration between researchers in artificial intelligence, robotics, animation, and biomechanics

will likely be necessary to fully achieve autonomous virtual characters, but hybrid use of

synthesis techniques can guide the development of systems towards this goal.
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