
by Michael Mandel
Carnegie Mellon University / Apple Computer

mmandel@gmail.com
http://www.mmandel.com/

Guest Speaker: Victor Zordan
University of California Riverside

Moving Beyond Ragdolls:
 Generating Versatile Human Behaviors by Combining

Motion Capture and Controlled Physical Simulation

What should our characters be able to do?

 Exhibit personality - move “sneakily” or “aggressively”

 Awareness of environment - balance/posture adjustments

 Lot’s of behaviors - leaping, grasping, moving, looking, attacking

 Physical force-induced movements (jumping, falling, swinging)

All this, and also be directable (by a player or NPC)...

Motivating Video: Nike “Presto’s”

How can we create a character
like this for our games?

+ Captures style and subtle nuances
- Predetermines characters abilities
(inflexible)

Motion Capture Data

- Can’t interact well with environment

Physical Simulation
+ Interacts well with environment
- “Ragdoll” movement is lifeless
- Difficult to develop complex behaviors

+ Captures style and subtle nuances
- Predetermines characters abilities
(inflexible)

Motion Capture Data

- Can’t interact well with environment

- Difficult to interface with existing motion

+ Captures style and subtle nuances
- Predetermines characters abilities
(inflexible)

Motion Capture Data

- Can’t interact well with environment

Proposed Method:

Motion Capture Data??

Physical Simulation??

• Combine the best of both approaches

• Activate either one when most appropriate

• Add life to ragdolls using control systems

• (only simulate behaviors that are manageable)

Physical Realism

Stylistic Realism

Receive Im
pactData-Driven Control

Dynamics Control

Motion Database
Get Up

Idle

Run

Jump

Attack

Fall Balance
Grab
Onto
Ledge

Simulated Behaviors

Search
Motion
Database

H
arder to

Sim
ulate

Settle
 Near

Motion

High-Level Example

Receive Im
pactData-Driven Control

Dynamics Control

Motion Database
Get Up

Idle

Run

Jump

Attack

Fall Balance
Grab
Onto
Ledge

Simulated Behaviors

Search
Motion
Database

H
arder to

Sim
ulate

Settle
 Near

Motion

Outline

2. Executing Transitions (Michael)

 Quick Ragdoll Intro (Michael)

1. Simulating Behaviors

3. Another Take on Transitioning (Victor)

Motion Data Simulation

4. Conclusions (Michael)

 Controllers (Victor)

Simulation Basics: Setting Up Ragdolls

1. Set of primitives for each body part

Supply Your Dynamics Engine:

2. Mass and inertial properties

4. Joint limit constraints
3. 1, 2, or 3-DOF joints between parts

Dynamics Engine Supplies:
 Updated positions/orientations
 Collision resolution with world

Ultimately, you will drive your skeleton
with the simulated primitives...

5. External forces (gravity, etc.)

Ragdoll Simulation in Today’s Games
Half Life 2

Works great in these situations...

Ragdoll Simulation in Today’s Games
Fight Night 2004

Works great in these situations...

Boxing Reactions WITH Controllers

courtesy of Natural Motion’s Endorphin...
http://www.naturalmotion.com

modeling conscious reaction...

Outline

2. Executing Transitions (Michael)

 Quick Ragdoll Intro (Michael)

1. Simulating Behaviors

3. Another Take on Transitioning (Victor)

Motion Data Simulation

4. Conclusions (Michael)

 Controllers (Victor)

Basic Controller Structure

Compute
Desired
Posture

Compute
Joint Torques

Simulator

External Forces

High-Level Low-Level

Classic
“Closed Loop”

System
(the feedback)

Sensors

Simulation State

Biomechanical
Knowledge

Artist Poses

Practical Limitations

Harder

Easier
Falling

Running

Balancing

Tai Chi

 Can be difficult to design
(complex coordination of limbs)

 Results can look stiff and unrealistic

 Tip: let natural dynamics of the
system control some of the body

More Ballistic

Less DOFs to
directly specify

Know your limitations...

Types of Control

Basic Joint-torque Control

Hierarchical Control

 Low-level control
 Sparse Pose control

(May be specified by artist)
 Continuous control

(Ex: Tracking mocap data)

 Layered controllers
 Higher level controller determines correct
desired value for low level
 Derived from sensor or state info

 Support polygon, center of mass, body contacts, etc.

Joint-torque Control

Proportional-Derivative (PD) Controller

and are spring and damper gains
is desired joint angle and is current angle

 Actuate each joint towards desired target:

 Acts like a damped spring attached to joint (rest
position at desired angle)

 Alternatively, we could set to mocap
(called motion tracking)

Choosing Controller Gains

(see [Zordan ‘02] for more...)

 Scale gains by effective moment of inertia of the chain
of bodies connected to each joint:

 Reduce tuned parameters to a single spring and damper

- Mass of body i

- Relative center of mass (CM)

- Relative velocity of CM

- Inertia tensor of body

- Angular velocity of body

shoulder

elbow

wrist

Chain CM

 More adaptive to natural dynamics of a behavior

 Gains are often hand tuned (tedious!)

Live Demo

http://ode.org

Created With:

Download simplified demo source at:

Full Source
in Game Gems 5

http://www.mmandel.com/gdc

Mid-Level Control: Standing Balance

Controller’s Goal:
Keep the simulation’s center
of mass (COM) safely inside
the support polygon made
by the feet

To Accomplish Goal:
Pick a desired COM and
minimize errors by making
corrections in the leg
actuation

Mid-Level Control: Standing Balance

Mh

Mkn

Ma

Frx
Fr(x,y) = kr (err) - br (err)

Balancing force to control COM
computed from the balance error:

M(h->a) = Fr X X(h->a)

 τbalance= JT0 0M(h->a)

Convert force to torques:

Combine with basic tracking to allow
reacting to contact while standing

Breaking Down Behaviors

Example: Running (see [Hodgins ‘95])

 Finite State Machines are a common
representation for motor control states

 Time or event based transitions

Flight

Heel Contact

Loading

Foot Contact

Toe Contact

Unloading

heel touches ground

Knee bend

ball of foot touches groundhip in front of heel

Knee extended

ball of foot leaves ground

Complex Behaviors From Simple Controllers
[Faloutsos et. al ‘01]

 Build basic behaviors
 sit, stand, fall

(pose controllers)

 Classify transitions between
behaviors based on conditions

 Supervisor controller swaps
between them when conditions met

Simulation References:

 [Hodgins et al., Animating Human Athletics. SIGGRAPH ‘95]

 [Faloutsos et al., Composable Controllers for Physically-based Character
Animation. SIGGRAPH ‘01]

 [Mandel, Adding Life to Ragdoll Simulation Using Feedback Control Systems.
Game Programming Gems 5]

 [Zordan et al., Motion Capture-Driven Simulations That Hit and React. Symposium
on Computer Animation ‘02]

 [Smith, The Open Dynamics Engine. Available at http://ode.org/.]

 [Laszlo et al., Interactive Control for Physically-based Animation. SIGGRAPH ‘00]

Outline

2. Executing Transitions (Michael)

 Quick Ragdoll Intro (Michael)

1. Simulating Behaviors

3. Another Take on Transitioning (Victor)

Motion Data Simulation

4. Conclusions (Michael)

 Controllers (Victor)

Executing Transitions
State space of data-driven technique:

State space of dynamics-based technique:
 Set of poses allowable by joint limit constraints
 MUCH larger because it:

 Any pose present in the motion database

Clearly, some correspondence must be made to
allow smooth transitions between the two

 can produce motion difficult to animate or capture
 includes large set of unnatural poses

SimulationMotion Data

Simulation Motion Data

 Easy. Just initialize simulation with pose and velocities
extracted from motion data.

 Much harder. No way to predict the ending pose of the
simulation...

1. Identify closest frames of motion
 (Choose most appropriate frame)
2. Drive simulation towards best match

Transitioning Between Techniques
When to transition?

How to transition?

Correspondence Steps:

1. Data Reduction/Representation

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

Simple Approach:

 Automatic keyframe extraction on relevant motion

2. Process into Spatial Data Structure

Problem: Find nearest matches in the motion database
to the current simulated motion.

3. Search Structure at Runtime

 kd-tree works well

 Query pose comes from simulation

 Data Representation
 Joint Positions

 Pose as nearest neighbor search problem
 Choose motion most relevant to in-game situation

Data Representation: Joint Positions

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

 Need representation that allows numerical
comparison of body posture

 Joint angles not as discriminating as joint positions

Original Joint Positions Aligned Positions

 May also want to include joint velocities
 Ignore root translation and align about vertical axis

Approximate Nearest Neighbor (ANN) Search
S. Ayra and D. M. Mount. Approximate nearest neighbor queries
in fixed dimensions. 1993.

 Results guaranteed to be within a factor of
of actual nearest neighbors

 O(log n) expected run time and O(nlogn) space requirement

 Balanced box decomposition tree (bbd-tree) fits input data tighter

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

A Note on Searching Efficiently...

Free code available at:
http://www.cs.umd.edu/~mount/ANN/

 Much better in practice than KNN as dimensionality of points increases

 Metric trees and spill trees can do even better...

(see [Liu et. al 2004] and [Gionis et. al 1998])
 Locality Sensitive Hashing (LSH) is also an alternative

3

Sample Performance Numbers (using ANN)

 Motions consist of sneaking, running, attacking, idling, etc.

(Between 1/100th and 1/1000th of a second per query)

 Averaged over 150 trials

 d=48 for each frame

 epsilon=.2 for ANN

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

Speeding it up?

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

 Human motion is inherently coordinated
 i.e. frames matching left elbow more likely to match right elbow

 Nearest neighbor algorithms suffer from:

Exponential
decrease in
performance

Dimensionality
of data increases

as the

Possible Solution:
Decouple the joints and search them separately

(keeps dimensionality low),
then combine the results

Speeding it up:

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

Query Pose

Search 1

Search 2

Search 3

Search n-2

...

Result 1

Result 2...
Result k

L Foot

L Knee

L Hip

R Wrist

...

Head

R Elbow Search n-1

Search n

Motion
Database

k Results

Merge

Importance
Weights

k Results

k Results

k Results

k R
esu

lts

k R
esu

lts

n 3-DOF searches is faster than one n-DOF search...

Search Each Joint Position Separately

Can favor
certain parts
of the body

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

Performance Improvement: Great!

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

Accuracy: Not as great...

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

Accuracy: Sanity Check

Successfully utilizes natural correlations in motion data

Speeding it up: Tradeoffs...

 Pair more joints together to increase accuracy
 Tradeoff performance for increased accuracy

 Pair least correlated joints for best results...

 Just because you don’t find the best match, doesn’t
mean you don’t get a good match

 Wash out the error when you drive simulation toward match

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

 Can adjust performance levels for different situations
 Less visible characters use faster, but lower quality results
 Could also just play with epsilon parameter to increase performance

Where are we now?

Walk Simulated Fall Get Up
Data-Driven Data-DrivenDynamics

Idle

What’s Missing?

1. The fall lacks life

2. Transition has
blending artifacts

Fixing the Transition...

Problem: At the time a transition is requested,
the simulation is NOT likely to be in a posture
contained in the motion database

How can we get the simulation to settle
near the best matching motion data?

Can we maintain physical constraints between the
body and the environment?

(It IS likely, however, to be interacting closely
with the environment)

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

Solution: Settle Controller
Actuate joints using a special PD controller to settle the
simulation near selected motion data

 A physically grounded alternative to blending

 Pose controller uses search result as target joint angles

 Complex situations might be handled by more specialized
controllers

1. Identify closest frames of motion
2. Drive simulation towards best match

Simulation Motion Data

 Can always finish it off with blending if you get stuck...

 Avoids object interpenetrations and foot sliding...

Fixing the Transition...

One Possibility: A Simple Pose Controller

 Look at initial conditions of an impact and choose
initial desired reaction from a database of example poses

This can work well, but might not be as
dynamic as we’d like.

Another Solution:
A Continuous Controller

 May update desired pose as simulation evolves - still
totally data-driven (and artist directed)

Adding Life to the Falling Motion

highly effective motor control strategies hard to model

Goal:
Reasonably approximate what humans do during
a full loss of balance (biomechanically inspired)

Possible Approach:
 Track predicted shoulder landing
locations with arms
 Direction the body falls determines
which arms do tracking

 Can change as simulation evolves

 Properly tune body gains...

Adding Life to the Falling Motion

Prototype System Overview

1. Motion Data Control

2. Transition to Simulation

3. Simulated Falling Behavior

4. Transition to Motion Data

5. Motion Data Control

Motion Data
External Force

Fall Controller

Forward/Backward

Left Right

(Blen
din

g)

 Contact
Drive Towards

Motion

Settle Controller

Data-Driven Control
Dynamics Control

Nearest Neighbor Search
Hand

Idle Simulated Fall Get Up
Data-Driven Data-DrivenDynamics

Idle

Results

Idle Simulated Fall
and Roll

Get Up
Data-Driven Data-DrivenDynamics

Results: Extending the Fall Controller...

Outline

2. Executing Transitions (Michael)

 Quick Ragdoll Intro (Michael)

1. Simulating Behaviors

3. Another Take on Transitioning (Victor)

Motion Data Simulation

4. Conclusions (Michael)

 Controllers (Victor)

How do we make physically-based
transitions while taking advantage of mocap?

Basic Idea:

The Problem:
How do you transition from

simulation to mocap elegantly?

1. Start from mocap
2. Move to simulation when interaction takes place
3. Perform graph-like search
4. Return to mocap as soon as possible!

(i.e. BEFORE hitting ground or straying too far from mocap)

[Zordan et. al ‘04]

Physically-Based Transitions Following
Impacts, With Motion Capture

 Apply impact forces to sim

 Search using window-ing to find
clip post interaction

(see [Kovar et. al ‘02])

 Actively track the motion clip
as it transitions, to get the posture
in place with joint torques

 Add global positions using
forces to position character

PostureOptical Data + Simulation

Physically-Based Transitions
Motivated from using a sim. to map data (Zordan & Horst ‘03)

Use same approach here to create “docking” forces

 Forces pull (or dock) character into place
 Starting from virtual ‘landmarks,’ we guide the simulated
bodies using intuitive forces

Springs pull the simulation to
the marker data

Body forces damp motion

Fmarker = -kf
Xerror

Fdamping = -bf Vbody

Physically-Based Transitions

Physically-Based Transitions

Internal torques mimics human reaction
External forces minimize error while not breaking the
physical engine

 This method combines mocap “pose-clip” while the
interaction forces are still taking place...

 Doesn’t guaruntee a perfect match at the end, but we
manage this with blending!

Animation Examples

Animation Examples

More Recent Results

Outline

2. Executing Transitions (Michael)

 Quick Ragdoll Intro (Michael)

1. Simulating Behaviors

3. Another Take on Transitioning (Victor)

Motion Data Simulation

4. Conclusions (Michael)

 Controllers (Victor)

Making it Practical...

Games need to guarantee robustness

 Start simple - pose controllers with artist predefined
reactions

 Fake things like balance control

 Consider simulating only some of the body

 Specify only the DOFs necessary
 Let the natural dynamics of the system guide the behavior

 Games can sacrifice physical realism for robustness/
speed - know when using simulation is appropriate!

 Make the ground “stickier”
 External balancing forces to keep the body upright

From Research
Reil and Massey ‘01, Oxford University

...

Natural Motion’s Endorphin
http://www.naturalmotion.com/

From Research to Robustness...

Hybrid System Discussion

 Support future goal of simulating everything with
ability to fall back on pre-recorded motion

 Hybrid system supporting roundtrip transitions
between motion data and simulation

 Bottom-up approach allowing incremental additions to
simulated behavioral repertoire

 Choose best approach for current in-game situation
 Easy to add to your existing skeletal and ragdoll systems

Special Thanks

Carnegie Mellon Motion Capture Lab
(free mocap data available at http://mocap.cs.cmu.edu)

Jessica Hodgins

Victor Zordan

Rich Carson and Iikka Keranen

Moshe Mahler

Questions / Comments?

